Multimodal Architecture for Sentiment Recognition via employing Multiple Modalities

计算机科学 模式 建筑 人工智能 自然语言处理 语音识别 历史 社会科学 社会学 考古
作者
Satwanti Kapoor,Shubham Gulati,Sumit Verma,Ananya Pandey,Dinesh Kumar Vishwakarma
标识
DOI:10.1109/incacct61598.2024.10551131
摘要

In the past, a lot of research has been done on text-driven sentiment analysis using benchmark multimodal Twitter-15 and Twitter-17 combined dataset. A small number of relevant studies have also shown the use of visual analysis to forecast sentiment in pictures. However, the majority of the research has only examined one modality of data—text, photos, or GIF videos. Lately, with photos, memes, and GIFs taking over social media feeds, typographic and info-graphic visual material has emerged as a significant component of social media. The suggestion is a multi-modal sentiment analysis model that may be used to ascertain the sentiment polarity and score of each incoming tweet, taking into the consideration of text as well as image features of the tweet. Text-based sentiment scoring is done using BERT, RoBERTa, XLNet. Vision-based sentiment scoring is done using ResNet-50, RegNet, ResNeXt. The study came up with a Multi-modal Sentiment Recognition model consisting of text and image models and combining the sentiment scores from the separately processed text and image. Using the Twitter-1517 benchmark multi-modal twitter dataset, the model with RegNet for visual scoring and RoBERTa for text scoring demonstrates a high performance accuracy of 77.24%. The study goes on to show that integrating text and picture characteristics performs better than independent models that only use text analysis or images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
爱学习的好孩子完成签到,获得积分10
2秒前
SDNUDRUG发布了新的文献求助10
2秒前
3秒前
3秒前
academic_rookie完成签到,获得积分10
4秒前
努力学习完成签到,获得积分10
4秒前
22完成签到,获得积分20
5秒前
xiaowang完成签到,获得积分10
5秒前
香蕉觅云应助水博士采纳,获得10
5秒前
6秒前
qqdm完成签到 ,获得积分10
6秒前
澍澍完成签到,获得积分10
6秒前
8秒前
Ameko809发布了新的文献求助10
9秒前
YaoHui发布了新的文献求助10
9秒前
10秒前
ala发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
外向从灵完成签到,获得积分10
13秒前
13秒前
知许解夏应助北彧采纳,获得10
16秒前
LC完成签到 ,获得积分10
16秒前
129753发布了新的文献求助10
17秒前
澳洲小肥牛完成签到,获得积分10
17秒前
彭于彦祖应助0384p采纳,获得200
17秒前
18秒前
深情安青应助猴哥好样的采纳,获得10
18秒前
水博士发布了新的文献求助10
19秒前
王线性完成签到,获得积分10
19秒前
黎尘完成签到,获得积分10
19秒前
素颜浅笑发布了新的文献求助20
20秒前
善学以致用应助六点一横采纳,获得10
20秒前
猪猪hero应助顺心的巨人采纳,获得10
21秒前
轩辕一笑发布了新的文献求助10
21秒前
yjj关闭了yjj文献求助
21秒前
22秒前
22秒前
夏风发布了新的文献求助10
24秒前
CipherSage应助姜懿采纳,获得10
24秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961170
求助须知:如何正确求助?哪些是违规求助? 3507441
关于积分的说明 11136135
捐赠科研通 3239926
什么是DOI,文献DOI怎么找? 1790456
邀请新用户注册赠送积分活动 872439
科研通“疑难数据库(出版商)”最低求助积分说明 803152