Multinomial Logistic Regression with Adaptive Regularization for Cancer Subtype Classification via Multi-omics Data

多项式logistic回归 逻辑回归 多项式分布 回归 组学 计算机科学 正规化(语言学) 人工智能 机器学习 统计 数学 生物 生物信息学
作者
Yingdi Wu,Fuzhen Cao,Juntao Li
出处
期刊:Current Bioinformatics [Bentham Science]
卷期号:19
标识
DOI:10.2174/0115748936308171240605075531
摘要

Background: Integrating multi-omics data for cancer classification brings complementary biological insights while also facing challenges such as data integration, gene grouping, and adaptive weight construction. Objective: This paper aims to address the challenges faced by the cancer subtype classification and gene screening based on multi-omics data. Methods: Multinomial logistic regression with adaptive regularization (MLRAR) was proposed by integrating DNA methylation, gene mutation, and RNA-seq information. A data preprocessing strategy that effectively utilizes multi-omics information was presented, and the local maximum quasiclique merging (lmQCM) algorithm was implemented to group genes. Biological pathway information was utilized to evaluate the significance of gene groups, while the significance of each gene within a group was evaluated by integrating mutation information, information theory, and methylation information. Results: Compared to MRlasso, MRGL, MSGL, MROGL, AMRSOGL, and AGLRMR, the proposed method yielded improvements in subtype classification accuracy of breast cancer by 2.6%, 2.9%, 3.5%, 2.3%, 2.0%, and 1.8%, respectively. In addition, MLRAR also achieved significant improvements in ovarian cancer by 8.2%, 5.0%, 6.8%, 5.2%, 12.7%, and 6.3%, respectively. Conclusion: The proposed method can effectively deal with data integration, gene grouping, and adaptive weight construction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
哇咔咔完成签到,获得积分10
刚刚
刚刚
江吉完成签到 ,获得积分10
1秒前
zhang发布了新的文献求助10
1秒前
JamesPei应助lulu采纳,获得30
1秒前
gishwx发布了新的文献求助10
2秒前
remember发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
向北发布了新的文献求助10
3秒前
4秒前
4秒前
冬藏完成签到,获得积分10
4秒前
qiuxiu发布了新的文献求助10
5秒前
7秒前
英姑应助满意以亦采纳,获得30
7秒前
gww发布了新的文献求助20
8秒前
枫林晚完成签到,获得积分10
8秒前
JiangY完成签到,获得积分10
9秒前
9秒前
9秒前
陈云凤完成签到,获得积分10
9秒前
ayintree发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
10秒前
zhang完成签到,获得积分20
10秒前
ning发布了新的文献求助10
10秒前
10秒前
元谷雪发布了新的文献求助10
11秒前
11秒前
12秒前
Return应助科研通管家采纳,获得10
12秒前
积极的箴完成签到,获得积分10
12秒前
无极微光应助科研通管家采纳,获得20
12秒前
英俊的铭应助科研通管家采纳,获得10
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695307
求助须知:如何正确求助?哪些是违规求助? 5101268
关于积分的说明 15215811
捐赠科研通 4851665
什么是DOI,文献DOI怎么找? 2602640
邀请新用户注册赠送积分活动 1554296
关于科研通互助平台的介绍 1512277