Highly Asymmetric CuSA‐Ov‐Ti3c Atomic Sites Catalyst for Unprecedented Solar Hydrogen Generation

材料科学 催化作用 物理 生物化学 量子力学 化学
作者
Dileep Kumar,Ankit Mishra,Shubham,Hemant,Sudip Bhattacharjee,Rajashri Urkude,Biplab Ghosh,Asim Bhaumik,Anil K. Sinha,Amit Sinha,Vipin Amoli
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:14 (32)
标识
DOI:10.1002/aenm.202401964
摘要

Abstract Atomic‐level tailoring of active sites is an efficient strategy for designing high‐performance photocatalysts for clean energy. Asymmetric atomic sites (AAS) like M SA ‐O v ‐M 2 created through hetero‐metal single atoms (M SA ) doping on defect‐rich metal oxides (M 2 ‐O v ‐M 2 ) are favored for better activation of targeted molecules. However, creating AAS typically demands high energy input, hindering their widespread use in photocatalytic H 2 production. Furthermore, precise control over surface defects to create AAS remains challenging. Here, Cu SA ‐O v ‐Ti 3c highly asymmetric atomic sites catalyst (HAASC) is constructed by strategically trapping Cu single atoms on high‐index (111) faceted TiO 2 . This material combines single‐atom catalysis and facet engineering, achieving unprecedented H 2 production rates (8.3 mmol h −1 g −1 in pure water and 784.5 mmol h −1 g −1 in water/methanol mixture). Experimental and theoretical analyses reveal Cu SA substituting five‐coordinated Ti atoms (Ti 5c ) next to three‐coordinated (Ti 3c ) ones, forming Cu SA ‐O v ‐Ti 3c HAAS. HAAS plays multiple roles in i) improving light harvesting, charge‐transfer dynamics, and redox capability of photoexcited electrons; ii) enhanced adsorption and polarization of H 2 O molecules; iii) facilitating electron transfer from Cu SA ‐O v ‐Ti 3c to H 2 O molecules, and iv) raising d‐band center toward Fermi level resulting in ≈250‐fold enhanced H 2 production than Ti 5c ‐O‐Ti 3c AASC. This work opens new avenues for future structural designs in heterogeneous catalysis for energy‐related applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YeeLeeLee完成签到,获得积分10
刚刚
凯卮完成签到,获得积分10
1秒前
1秒前
睡到人间煮饭时完成签到 ,获得积分10
1秒前
稀松完成签到,获得积分0
2秒前
彩色的灭龙完成签到,获得积分20
2秒前
撒拉溪吧完成签到 ,获得积分10
3秒前
奋斗人雄完成签到,获得积分10
3秒前
灵巧谷波完成签到,获得积分10
5秒前
温暖宛筠完成签到,获得积分10
6秒前
赵老尕完成签到,获得积分10
7秒前
kang完成签到,获得积分20
8秒前
山丘完成签到,获得积分10
9秒前
Lucy完成签到,获得积分10
10秒前
bkagyin应助酷酷的匪采纳,获得10
10秒前
shineshine完成签到 ,获得积分10
10秒前
棵虫完成签到,获得积分10
11秒前
conanyangqun完成签到,获得积分0
11秒前
风雨霖霖完成签到,获得积分10
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
byron完成签到 ,获得积分10
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
Jasper应助科研通管家采纳,获得10
12秒前
Nick应助科研通管家采纳,获得10
12秒前
开心浩阑应助科研通管家采纳,获得10
12秒前
李爱国应助科研通管家采纳,获得20
12秒前
xzy998应助科研通管家采纳,获得10
12秒前
12秒前
i羽翼深蓝i完成签到,获得积分10
12秒前
朴实的绿兰完成签到 ,获得积分10
12秒前
皇帝的床帘完成签到,获得积分10
13秒前
赫连紫完成签到,获得积分10
13秒前
天真依玉完成签到,获得积分10
13秒前
可取完成签到,获得积分10
14秒前
一一一完成签到,获得积分10
14秒前
Dado应助Lucy采纳,获得10
14秒前
14秒前
14秒前
孙燕应助小罗每天都很困采纳,获得10
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015762
求助须知:如何正确求助?哪些是违规求助? 3555701
关于积分的说明 11318515
捐赠科研通 3288899
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027