Deep Learning Classification and Quantification of Pejorative and Nonpejorative Architectures in Resected Hepatocellular Carcinoma from Digital Histopathologic Images

贬义的 肝细胞癌 肝切除术 人工智能 稳健性(进化) 切除术 放射科 计算机科学 机器学习 医学 外科 生物 内科学 语言学 哲学 基因 生物化学
作者
Astrid Laurent-Bellue,Aymen Sadraoui,Laura Claude,Julien Caldéraro,Katia Posseme,Éric Vibert,Daniel Cherqui,Olivier Rosmorduc,Maïté Lewin,Jean‐Christophe Pesquet,Catherine Guettier
出处
期刊:American Journal of Pathology [Elsevier BV]
卷期号:194 (9): 1684-1700 被引量:1
标识
DOI:10.1016/j.ajpath.2024.05.007
摘要

Liver resection is one of the best treatments for small hepatocellular carcinoma (HCC), but post-resection recurrence is frequent. Biotherapies have emerged as an efficient adjuvant treatment, making the identification of patients at high risk of recurrence critical. Microvascular invasion (mVI), poor differentiation, pejorative macrotrabecular architectures, and vessels encapsulating tumor clusters architectures are the most accurate histologic predictors of recurrence, but their evaluation is time-consuming and imperfect. Herein, a supervised deep learning-based approach with ResNet34 on 680 whole slide images (WSIs) from 107 liver resection specimens was used to build an algorithm for the identification and quantification of these pejorative architectures. This model achieved an accuracy of 0.864 at patch level and 0.823 at WSI level. To assess its robustness, it was validated on an external cohort of 29 HCCs from another hospital, with an accuracy of 0.787 at WSI level, affirming its generalization capabilities. Moreover, the largest connected areas of the pejorative architectures extracted from the model were positively correlated to the presence of mVI and the number of tumor emboli. These results suggest that the identification of pejorative architectures could be an efficient surrogate of mVI and have a strong predictive value for the risk of recurrence. This study is the first step in the construction of a composite predictive algorithm for early post-resection recurrence of HCC, including artificial intelligence-based features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
leec应助sopha采纳,获得20
2秒前
2秒前
3秒前
爆米花应助xielunwen采纳,获得10
3秒前
传奇3应助义气绿柳采纳,获得10
3秒前
笨笨松发布了新的文献求助10
4秒前
YamDaamCaa给七七丫的求助进行了留言
5秒前
aaaaaa发布了新的文献求助10
5秒前
chengya完成签到,获得积分10
5秒前
5秒前
出其东门完成签到,获得积分10
5秒前
搜集达人应助li采纳,获得10
6秒前
大模型应助Z2WWS32采纳,获得10
6秒前
6秒前
小赵完成签到,获得积分20
7秒前
xl关闭了xl文献求助
7秒前
ZH发布了新的文献求助10
7秒前
泡泡啰叽发布了新的文献求助10
8秒前
9秒前
lys完成签到,获得积分20
10秒前
碎碎念s发布了新的文献求助30
11秒前
小羊羔子完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
嘻嘻哈哈完成签到,获得积分10
13秒前
空空发布了新的文献求助10
13秒前
13秒前
smottom应助王博雅采纳,获得20
14秒前
14秒前
香蕉觅云应助ZH采纳,获得10
16秒前
16秒前
小鱼儿发布了新的文献求助10
16秒前
17秒前
干净怀寒发布了新的文献求助30
17秒前
18秒前
灵巧阑香发布了新的文献求助10
18秒前
默默安双完成签到 ,获得积分20
19秒前
Xxxxxxx完成签到,获得积分10
19秒前
CipherSage应助笨笨松采纳,获得10
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966681
求助须知:如何正确求助?哪些是违规求助? 3512151
关于积分的说明 11161937
捐赠科研通 3246996
什么是DOI,文献DOI怎么找? 1793640
邀请新用户注册赠送积分活动 874520
科研通“疑难数据库(出版商)”最低求助积分说明 804421