SwinCNN: An Integrated Swin Trasformer and CNN for Improved Breast Cancer Grade Classification

乳腺癌 计算机科学 人工智能 模式识别(心理学) 恶性肿瘤 卷积神经网络 医学 癌症 病理 内科学
作者
V. Sreelekshmi,K Pavithran,Jyothisha J. Nair
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 68697-68710 被引量:1
标识
DOI:10.1109/access.2024.3397667
摘要

Breast cancer is the most commonly diagnosed cancer among women, globally. The occurrence and fatality rates are high for breast cancer compared to other types of cancer. The World Cancer report 2020 points out early detection and rapid treatment as the most efficient intervention to control this malignancy. Histopathological image analysis has great significance in early diagnosis of the disease. Our work has significant biological and medical potential for automatically processing different histopathology images to identify breast cancer and its corresponding grade. Unlike the existing models, we grade breast cancer by including both local and global features. The proposed model is a hybrid multi-class classification model using depth-wise separable convolutional networks and transformers, where both local and global features are considered. In order to resolve the self-attention module complexity in transformers patch merging is performed. The proposed model can classify pathological images of public breast cancer data sets into different categories. The model was evaluated on three publicly available datasets, like BACH, BreakHis and IDC. The accuracy of the proposed model is 97.800 % on the BACH dataset, 98.130 % on BreakHis dataset and 98.320 % for the IDC dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糖炒小白云关注了科研通微信公众号
1秒前
蜗牛123发布了新的文献求助10
1秒前
失眠的数据线完成签到,获得积分10
2秒前
xiaoming完成签到 ,获得积分10
2秒前
香蕉觅云应助orange9采纳,获得10
2秒前
vinni完成签到 ,获得积分10
2秒前
超帅巨人发布了新的文献求助10
2秒前
科目三应助王瑞采纳,获得10
2秒前
strings完成签到,获得积分10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
阳光的雯发布了新的文献求助10
5秒前
5秒前
派大星发布了新的文献求助10
5秒前
王001011完成签到,获得积分10
6秒前
Criminology34应助归海楷瑞采纳,获得10
6秒前
7秒前
甜甜的幼珊完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
iNk应助F_echo采纳,获得10
7秒前
七分侥幸完成签到,获得积分20
8秒前
8秒前
8秒前
CK先森完成签到,获得积分20
8秒前
李爱国应助swordlee采纳,获得10
8秒前
9秒前
邓什么邓完成签到,获得积分20
10秒前
10秒前
阿年发布了新的文献求助10
10秒前
11秒前
11秒前
keyan发布了新的文献求助10
11秒前
11秒前
小小鱼发布了新的文献求助10
12秒前
深情安青应助靎藥采纳,获得10
12秒前
优秀笑寒完成签到,获得积分10
12秒前
风雨霖霖发布了新的文献求助10
12秒前
芳芳子发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Carbon black : production, properties, and applications. Ch. 4 in Marsh H 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5414563
求助须知:如何正确求助?哪些是违规求助? 4531551
关于积分的说明 14128768
捐赠科研通 4446914
什么是DOI,文献DOI怎么找? 2439545
邀请新用户注册赠送积分活动 1431581
关于科研通互助平台的介绍 1409276