Oil Price Volatility Prediction Using Out-Of-Sample Analysis – Prediction Efficiency of Individual Models, Combination Methods, And Machine Learning Based Shrinkage Methods

收缩率 波动性(金融) 预测建模 计量经济学 样品(材料) 人工智能 机器学习 计算机科学 经济 化学 色谱法
作者
Weiwei Cheng,Kai Ming,Mirzat Ullah
出处
期刊:Energy [Elsevier]
卷期号:: 131496-131496
标识
DOI:10.1016/j.energy.2024.131496
摘要

In this study, we compare the efficacy of forecast combination methods against machine learning-based shrinkage techniques in predicting oil price volatility. Our analysis is based on heterogeneous autoregressive (HAR) model framework. We employ eight individual HAR models and their variations, alongside five distinct combination methods for aggregating forecasts derived from HAR models and their variants. Additionally, we incorporate two widely recognized machine learning-based shrinkage methods, namely the elastic net and the lasso. Machine learning (ML) techniques, including elastic net and lasso, exhibit promise in estimating individual extended HAR models and combination sampled approaches. Meanwhile, model confidence set (MCS) estimation techniques demonstrate notably superior out-of-sample forecasting performance for the chosen sample. Our empirical findings reveal that both the elastic net and the lasso exhibit superior out-of-sample prediction accuracy in comparison to the individual HAR models and their variants, as well as the five combination techniques. Furthermore, we provide statistical evidence demonstrating the notably higher directional accuracy achieved by the elastic net and lasso methodologies. Importantly, our results remain statistically consistent across a range of robustness analyses. These findings hold significance for investors and policymakers, as they suggest potential economic benefits derived from allocating portfolios in alignment with oil price volatility estimates.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
过往匆匆应助科研通管家采纳,获得20
刚刚
CipherSage应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
pluto应助科研通管家采纳,获得10
1秒前
2秒前
whuhustwit发布了新的文献求助10
2秒前
传奇3应助饼干吃土豆采纳,获得10
2秒前
善良的樱完成签到 ,获得积分10
3秒前
pluto应助rosalie采纳,获得10
3秒前
DH驳回了大模型应助
3秒前
3秒前
替代完成签到 ,获得积分10
4秒前
Candy2024完成签到 ,获得积分10
4秒前
zyp发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
k_1发布了新的文献求助10
7秒前
隐形的玫瑰应助桔子鲁采纳,获得10
8秒前
8秒前
9秒前
彭于晏应助彭凯采纳,获得10
9秒前
炙热尔烟完成签到,获得积分10
9秒前
852应助qqqq采纳,获得10
10秒前
11秒前
11秒前
在水一方应助方法采纳,获得10
12秒前
今后应助炙热尔烟采纳,获得10
13秒前
852应助lq采纳,获得10
13秒前
JamesPei应助可爱绮采纳,获得10
13秒前
14秒前
Akim应助k_1采纳,获得10
14秒前
LIAO发布了新的文献求助10
14秒前
星辰大海应助何香稳采纳,获得10
15秒前
conquer发布了新的文献求助10
15秒前
孟晓晖完成签到 ,获得积分10
16秒前
16秒前
苏大帅爱看文献完成签到,获得积分10
17秒前
俊逸书琴发布了新的文献求助10
17秒前
飘逸的苡完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577556
求助须知:如何正确求助?哪些是违规求助? 4662649
关于积分的说明 14742832
捐赠科研通 4603346
什么是DOI,文献DOI怎么找? 2526283
邀请新用户注册赠送积分活动 1496084
关于科研通互助平台的介绍 1465546