Oil Price Volatility Prediction Using Out-Of-Sample Analysis – Prediction Efficiency of Individual Models, Combination Methods, And Machine Learning Based Shrinkage Methods

收缩率 波动性(金融) 预测建模 计量经济学 样品(材料) 人工智能 机器学习 计算机科学 经济 化学 色谱法
作者
Weiwei Cheng,Kai Ming,Mirzat Ullah
出处
期刊:Energy [Elsevier BV]
卷期号:: 131496-131496
标识
DOI:10.1016/j.energy.2024.131496
摘要

In this study, we compare the efficacy of forecast combination methods against machine learning-based shrinkage techniques in predicting oil price volatility. Our analysis is based on heterogeneous autoregressive (HAR) model framework. We employ eight individual HAR models and their variations, alongside five distinct combination methods for aggregating forecasts derived from HAR models and their variants. Additionally, we incorporate two widely recognized machine learning-based shrinkage methods, namely the elastic net and the lasso. Machine learning (ML) techniques, including elastic net and lasso, exhibit promise in estimating individual extended HAR models and combination sampled approaches. Meanwhile, model confidence set (MCS) estimation techniques demonstrate notably superior out-of-sample forecasting performance for the chosen sample. Our empirical findings reveal that both the elastic net and the lasso exhibit superior out-of-sample prediction accuracy in comparison to the individual HAR models and their variants, as well as the five combination techniques. Furthermore, we provide statistical evidence demonstrating the notably higher directional accuracy achieved by the elastic net and lasso methodologies. Importantly, our results remain statistically consistent across a range of robustness analyses. These findings hold significance for investors and policymakers, as they suggest potential economic benefits derived from allocating portfolios in alignment with oil price volatility estimates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pk发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
chongziccc完成签到 ,获得积分10
1秒前
cach完成签到,获得积分10
2秒前
2秒前
小马甲应助研友_ngkgbn采纳,获得10
3秒前
3秒前
chenqiumu应助Sea_U采纳,获得50
3秒前
爱吃的肥虾完成签到,获得积分10
3秒前
Zcl发布了新的文献求助10
3秒前
an发布了新的文献求助10
3秒前
Zx_1993应助工位瘤子采纳,获得20
3秒前
孙同学发布了新的文献求助10
4秒前
虚心盼夏发布了新的文献求助10
5秒前
5秒前
cxg应助可爱的冷霜采纳,获得10
6秒前
老实幻姬发布了新的文献求助10
6秒前
mhb发布了新的文献求助30
6秒前
充电宝应助an采纳,获得10
8秒前
hikari发布了新的文献求助10
8秒前
8秒前
cpulm完成签到,获得积分10
8秒前
wxyshare应助书院十四采纳,获得10
9秒前
CCC完成签到 ,获得积分10
9秒前
dhw完成签到,获得积分10
9秒前
李健的小迷弟应助samli采纳,获得20
10秒前
Li完成签到,获得积分10
10秒前
nadia完成签到,获得积分10
10秒前
华仔应助搞怪的青梦采纳,获得10
11秒前
波粒二象性完成签到,获得积分10
11秒前
chengzi1202完成签到,获得积分20
12秒前
田様应助孙同学采纳,获得10
12秒前
冰儿菲菲完成签到,获得积分10
13秒前
jason发布了新的文献求助10
13秒前
an完成签到,获得积分20
14秒前
15秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5259489
求助须知:如何正确求助?哪些是违规求助? 4421116
关于积分的说明 13761878
捐赠科研通 4294896
什么是DOI,文献DOI怎么找? 2356644
邀请新用户注册赠送积分活动 1353069
关于科研通互助平台的介绍 1314071