Inversely optimized design of Al-Mg-Si alloys using machine learning methods

材料科学 冶金 计算机科学
作者
Qiqi Shen,Qiao Yin,Hongliang Zhao,Shuya Zhang,Yuheng Fan,Xianglei Dong,Chunwen Guo
出处
期刊:Computational Materials Science [Elsevier BV]
卷期号:242: 113107-113107 被引量:9
标识
DOI:10.1016/j.commatsci.2024.113107
摘要

In this study, the previously reported inverse design strategy for simultaneously optimizing two properties of copper alloys was expanded to concurrently optimize three properties of Al-Mg-Si alloys. Following this strategy, 180 input features based on alloy compositions and corresponding physicochemical parameters were constructed. After feature screening, these input features were refined to 5, 6, and 4 key features for machine learning (ML) models of ultimate tensile strength (UTS), yield strength (YS) and elongation (EL), respectively. Utilizing these key features as inputs, SVR ML models were developed for UTS, YS, and EL. Subsequently, the ML models were employed to predict the properties, and these predictions were assessed using a function MOEI, which reflects the combination of all three properties based on Bayesian principles. The combined properties of the optimized alloy evaluated in this study exceeded the Pareto frontier formed by the initially collected alloys. Experimental analysis highlighted the significant contribution of β'' precipitates to the outstanding combined property of the designed alloy. This study showcases the successful extension of the inverse design strategy to concurrently optimize three properties of Al-Mg-Si alloys, offering valuable insights for future alloy design and development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪明听筠关注了科研通微信公众号
刚刚
Owen应助123456采纳,获得10
刚刚
1秒前
浮游应助Jay采纳,获得10
1秒前
小陈完成签到,获得积分10
1秒前
糖炒李子完成签到,获得积分10
2秒前
albertxin发布了新的文献求助10
2秒前
ding应助迅速老三采纳,获得10
2秒前
在水一方应助无私妙菡采纳,获得10
2秒前
3秒前
斯文败类应助wx采纳,获得10
3秒前
zuhayr应助beyond采纳,获得10
3秒前
是我完成签到,获得积分10
3秒前
hjy发布了新的文献求助10
3秒前
从容芮应助Dobby采纳,获得30
5秒前
领导范儿应助Roseaiwade采纳,获得10
5秒前
myp完成签到,获得积分10
6秒前
LLL完成签到,获得积分10
6秒前
xiaofeifantasy应助阮绝悟采纳,获得10
7秒前
科研通AI5应助丹布里采纳,获得10
7秒前
7秒前
wait发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
顾矜应助chem采纳,获得10
9秒前
科研通AI6应助迷路路人采纳,获得10
9秒前
荷包蛋完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
无私冷雪发布了新的文献求助10
11秒前
小杨要读博完成签到,获得积分10
12秒前
椰椰发布了新的文献求助10
12秒前
科研通AI5应助科研白白采纳,获得100
12秒前
杨杨杨发布了新的文献求助10
13秒前
Adian完成签到,获得积分10
13秒前
hjy完成签到,获得积分10
13秒前
LAN完成签到,获得积分10
13秒前
羊踯躅完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Thomas Hobbes' Mechanical Conception of Nature 500
One Health Case Studies: Practical Applications of the Transdisciplinary Approach 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5111916
求助须知:如何正确求助?哪些是违规求助? 4319955
关于积分的说明 13460437
捐赠科研通 4150834
什么是DOI,文献DOI怎么找? 2274465
邀请新用户注册赠送积分活动 1276349
关于科研通互助平台的介绍 1214523