Inversely optimized design of Al-Mg-Si alloys using machine learning methods

材料科学 冶金 计算机科学
作者
Qiqi Shen,Qiao Yin,Hongliang Zhao,Shuya Zhang,Yuheng Fan,Xianglei Dong,Chunwen Guo
出处
期刊:Computational Materials Science [Elsevier]
卷期号:242: 113107-113107
标识
DOI:10.1016/j.commatsci.2024.113107
摘要

In this study, the previously reported inverse design strategy for simultaneously optimizing two properties of copper alloys was expanded to concurrently optimize three properties of Al-Mg-Si alloys. Following this strategy, 180 input features based on alloy compositions and corresponding physicochemical parameters were constructed. After feature screening, these input features were refined to 5, 6, and 4 key features for machine learning (ML) models of ultimate tensile strength (UTS), yield strength (YS) and elongation (EL), respectively. Utilizing these key features as inputs, SVR ML models were developed for UTS, YS, and EL. Subsequently, the ML models were employed to predict the properties, and these predictions were assessed using a function MOEI, which reflects the combination of all three properties based on Bayesian principles. The combined properties of the optimized alloy evaluated in this study exceeded the Pareto frontier formed by the initially collected alloys. Experimental analysis highlighted the significant contribution of β'' precipitates to the outstanding combined property of the designed alloy. This study showcases the successful extension of the inverse design strategy to concurrently optimize three properties of Al-Mg-Si alloys, offering valuable insights for future alloy design and development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
獭獭发布了新的文献求助10
1秒前
草莓雪酪发布了新的文献求助30
4秒前
5秒前
Lucy发布了新的文献求助10
7秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
涂楚捷发布了新的文献求助10
9秒前
bkagyin应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
小马甲应助科研通管家采纳,获得20
9秒前
少夫人应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
9秒前
10秒前
勤奋的花生完成签到,获得积分10
10秒前
英姑应助文静三颜采纳,获得10
11秒前
12秒前
12秒前
13秒前
15秒前
NexusExplorer应助wo采纳,获得10
16秒前
16秒前
WEIDERR发布了新的文献求助10
16秒前
淡然的宛秋完成签到,获得积分10
16秒前
qwe完成签到,获得积分10
17秒前
19秒前
20秒前
思婷老公发布了新的文献求助10
20秒前
ftx完成签到,获得积分20
22秒前
22秒前
22秒前
赘婿应助WEIDERR采纳,获得10
23秒前
24秒前
24秒前
hangzi完成签到,获得积分10
24秒前
修语发布了新的文献求助10
24秒前
凡帝发布了新的文献求助10
24秒前
25秒前
开心纲发布了新的文献求助30
26秒前
27秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124684
求助须知:如何正确求助?哪些是违规求助? 2775048
关于积分的说明 7725009
捐赠科研通 2430539
什么是DOI,文献DOI怎么找? 1291201
科研通“疑难数据库(出版商)”最低求助积分说明 622091
版权声明 600323