Inversely optimized design of Al-Mg-Si alloys using machine learning methods

材料科学 冶金 计算机科学
作者
Qiqi Shen,Qiao Yin,Hongliang Zhao,Shuya Zhang,Yuheng Fan,Xianglei Dong,Chunwen Guo
出处
期刊:Computational Materials Science [Elsevier BV]
卷期号:242: 113107-113107 被引量:1
标识
DOI:10.1016/j.commatsci.2024.113107
摘要

In this study, the previously reported inverse design strategy for simultaneously optimizing two properties of copper alloys was expanded to concurrently optimize three properties of Al-Mg-Si alloys. Following this strategy, 180 input features based on alloy compositions and corresponding physicochemical parameters were constructed. After feature screening, these input features were refined to 5, 6, and 4 key features for machine learning (ML) models of ultimate tensile strength (UTS), yield strength (YS) and elongation (EL), respectively. Utilizing these key features as inputs, SVR ML models were developed for UTS, YS, and EL. Subsequently, the ML models were employed to predict the properties, and these predictions were assessed using a function MOEI, which reflects the combination of all three properties based on Bayesian principles. The combined properties of the optimized alloy evaluated in this study exceeded the Pareto frontier formed by the initially collected alloys. Experimental analysis highlighted the significant contribution of β'' precipitates to the outstanding combined property of the designed alloy. This study showcases the successful extension of the inverse design strategy to concurrently optimize three properties of Al-Mg-Si alloys, offering valuable insights for future alloy design and development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雏菊发布了新的文献求助10
1秒前
2秒前
4秒前
爆米花应助科研通管家采纳,获得100
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得20
4秒前
烟花应助科研通管家采纳,获得10
4秒前
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
5秒前
留胡子的紫槐完成签到,获得积分10
5秒前
5秒前
桐桐应助王子采纳,获得10
6秒前
淡淡的沅完成签到,获得积分10
6秒前
6秒前
英姑应助liars采纳,获得10
8秒前
8秒前
ccmaxp发布了新的文献求助10
9秒前
9秒前
Silence发布了新的文献求助10
9秒前
领导范儿应助予安采纳,获得10
10秒前
shann完成签到,获得积分10
11秒前
13秒前
13秒前
15秒前
Mingtiaoxiyue发布了新的文献求助30
15秒前
Npccc完成签到,获得积分10
15秒前
15秒前
开朗洋葱发布了新的文献求助10
15秒前
孙成成发布了新的文献求助10
18秒前
Carry发布了新的文献求助10
18秒前
Vincey完成签到,获得积分10
18秒前
王子发布了新的文献求助10
18秒前
圣西罗的饮水机完成签到,获得积分10
19秒前
敬老院N号应助zyw0532采纳,获得30
19秒前
19秒前
Silence完成签到,获得积分10
20秒前
纯真的诗兰完成签到,获得积分10
21秒前
从容的马喽完成签到,获得积分10
22秒前
小蘑菇应助beifa采纳,获得10
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975610
求助须知:如何正确求助?哪些是违规求助? 3519986
关于积分的说明 11200337
捐赠科研通 3256337
什么是DOI,文献DOI怎么找? 1798246
邀请新用户注册赠送积分活动 877446
科研通“疑难数据库(出版商)”最低求助积分说明 806357