亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting Directional Traffic Volume at Intersections with Automated Traffic Signal Performance Measures Data Using Machine Learning Algorithms

交通量 计算机科学 体积热力学 交通信号灯 算法 交叉口(航空) 人工智能 实时计算 运输工程 机器学习 工程类 量子力学 物理
作者
Bangyu Wang,Nancy Fulda,Zhengyang Huang,Grant G. Schultz,Gregory S. Macfarlane,Joseph Arnesen,Amir Ali Akbar Khayyat
出处
期刊:Transportation Research Record [SAGE]
标识
DOI:10.1177/03611981241252829
摘要

Automated traffic signal performance measures (ATSPM) have become widely adopted and utilized by state and local agencies in the U.S. for collecting real-time traffic data 24 h a day, 7 days a week. These agencies have developed new performance measures and applications to address their local transportation planning needs. However, recent research has identified data quality issues in the collected data from ATSPM systems. Specifically, the traffic volumes collected through ATSPM exhibit data anomalies that do not accurately reflect the actual traffic patterns at intersections. As such, there is a need to address the data quality issues found in ATSPM datasets. The purpose of this paper is to evaluate the use of machine learning algorithms and statistical methods to predict traffic volume at intersections. Existing traffic volume data, along with additional metrics such as timestamps, weather conditions, crash data, and holidays, are evaluated to predict traffic volume and address the data anomalies present in ATSPM datasets. Two statistical methods and four machine learning algorithms are evaluated to determine their ability to predict traffic volumes. By comparing the root mean square error (RMSE) and the mean absolute percentage error (MAPE) between each model, the results demonstrate that the long short-term memory (LSTM) model exhibits the lowest error in predicting traffic volume compared with the other models. The LSTM model achieves an RMSE as low as 9.4 vehicles and an MAPE as low as 35%. By leveraging the LSTM model, traffic agencies can enhance the quality of their ATSPM data, enabling better decision-making for traffic operations by their engineers and planners.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
9秒前
桐桐应助喝可乐也很好采纳,获得20
12秒前
君兰完成签到,获得积分10
13秒前
14秒前
16秒前
slby完成签到 ,获得积分10
17秒前
君兰发布了新的文献求助10
19秒前
友好碧完成签到 ,获得积分10
21秒前
乐观的月亮完成签到,获得积分10
26秒前
26秒前
zhuxiaoyue发布了新的文献求助10
26秒前
打打应助辉辉采纳,获得10
26秒前
美美完成签到,获得积分20
28秒前
31秒前
33秒前
35秒前
BeanHahn发布了新的文献求助10
35秒前
36秒前
阿离完成签到,获得积分10
37秒前
39秒前
无题完成签到,获得积分10
39秒前
辉辉发布了新的文献求助10
40秒前
42秒前
43秒前
45秒前
科研通AI6应助科研通管家采纳,获得10
46秒前
小蘑菇应助科研通管家采纳,获得10
46秒前
47秒前
48秒前
chenyue233完成签到,获得积分10
48秒前
specium发布了新的文献求助10
50秒前
chenyue233发布了新的文献求助10
54秒前
大个应助ECD采纳,获得10
55秒前
56秒前
1分钟前
BeanHahn完成签到,获得积分10
1分钟前
_u_ii发布了新的文献求助10
1分钟前
辉辉完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714225
求助须知:如何正确求助?哪些是违规求助? 5221821
关于积分的说明 15272955
捐赠科研通 4865714
什么是DOI,文献DOI怎么找? 2612313
邀请新用户注册赠送积分活动 1562449
关于科研通互助平台的介绍 1519671