Predicting Directional Traffic Volume at Intersections with Automated Traffic Signal Performance Measures Data Using Machine Learning Algorithms

交通量 计算机科学 体积热力学 交通信号灯 算法 交叉口(航空) 人工智能 实时计算 运输工程 机器学习 工程类 物理 量子力学
作者
Bangyu Wang,Nancy Fulda,Zhengyang Huang,Grant G. Schultz,Gregory S. Macfarlane,Joseph Arnesen,Amir Ali Akbar Khayyat
出处
期刊:Transportation Research Record [SAGE Publishing]
标识
DOI:10.1177/03611981241252829
摘要

Automated traffic signal performance measures (ATSPM) have become widely adopted and utilized by state and local agencies in the U.S. for collecting real-time traffic data 24 h a day, 7 days a week. These agencies have developed new performance measures and applications to address their local transportation planning needs. However, recent research has identified data quality issues in the collected data from ATSPM systems. Specifically, the traffic volumes collected through ATSPM exhibit data anomalies that do not accurately reflect the actual traffic patterns at intersections. As such, there is a need to address the data quality issues found in ATSPM datasets. The purpose of this paper is to evaluate the use of machine learning algorithms and statistical methods to predict traffic volume at intersections. Existing traffic volume data, along with additional metrics such as timestamps, weather conditions, crash data, and holidays, are evaluated to predict traffic volume and address the data anomalies present in ATSPM datasets. Two statistical methods and four machine learning algorithms are evaluated to determine their ability to predict traffic volumes. By comparing the root mean square error (RMSE) and the mean absolute percentage error (MAPE) between each model, the results demonstrate that the long short-term memory (LSTM) model exhibits the lowest error in predicting traffic volume compared with the other models. The LSTM model achieves an RMSE as low as 9.4 vehicles and an MAPE as low as 35%. By leveraging the LSTM model, traffic agencies can enhance the quality of their ATSPM data, enabling better decision-making for traffic operations by their engineers and planners.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助ZZZ采纳,获得10
1秒前
小绵羊完成签到,获得积分10
2秒前
科研通AI2S应助Jenny采纳,获得10
2秒前
3秒前
6秒前
yinuo发布了新的文献求助10
7秒前
共享精神应助小姜采纳,获得10
7秒前
斯文败类应助小姜采纳,获得100
7秒前
rksm完成签到 ,获得积分10
7秒前
Strongly完成签到,获得积分10
10秒前
尼可深蓝完成签到 ,获得积分10
12秒前
baibai完成签到 ,获得积分10
13秒前
yls发布了新的文献求助10
14秒前
Bin_Liu发布了新的文献求助10
14秒前
16秒前
lumingrui完成签到,获得积分10
19秒前
懒羊羊完成签到,获得积分10
21秒前
bkagyin应助科研通管家采纳,获得10
22秒前
SciGPT应助科研通管家采纳,获得30
22秒前
地表飞猪应助科研通管家采纳,获得10
22秒前
别管我了应助科研通管家采纳,获得10
22秒前
今后应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
Lucas应助科研通管家采纳,获得10
22秒前
桐桐应助科研通管家采纳,获得10
23秒前
今后应助科研通管家采纳,获得10
23秒前
汉堡包应助科研通管家采纳,获得10
23秒前
orixero应助科研通管家采纳,获得10
23秒前
23秒前
归尘发布了新的文献求助10
23秒前
23秒前
23秒前
隐形曼青应助科研通管家采纳,获得10
23秒前
24秒前
哭泣的翠丝完成签到,获得积分10
24秒前
liu完成签到,获得积分10
26秒前
无花果应助yls采纳,获得30
27秒前
归尘完成签到,获得积分10
28秒前
29秒前
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966223
求助须知:如何正确求助?哪些是违规求助? 3511680
关于积分的说明 11159133
捐赠科研通 3246277
什么是DOI,文献DOI怎么找? 1793321
邀请新用户注册赠送积分活动 874347
科研通“疑难数据库(出版商)”最低求助积分说明 804343