Predicting Directional Traffic Volume at Intersections with Automated Traffic Signal Performance Measures Data Using Machine Learning Algorithms

交通量 计算机科学 体积热力学 交通信号灯 算法 交叉口(航空) 人工智能 实时计算 运输工程 机器学习 工程类 物理 量子力学
作者
Bangyu Wang,Nancy Fulda,Zhengyang Huang,Grant G. Schultz,Gregory S. Macfarlane,Joseph Arnesen,Amir Ali Akbar Khayyat
出处
期刊:Transportation Research Record [SAGE]
标识
DOI:10.1177/03611981241252829
摘要

Automated traffic signal performance measures (ATSPM) have become widely adopted and utilized by state and local agencies in the U.S. for collecting real-time traffic data 24 h a day, 7 days a week. These agencies have developed new performance measures and applications to address their local transportation planning needs. However, recent research has identified data quality issues in the collected data from ATSPM systems. Specifically, the traffic volumes collected through ATSPM exhibit data anomalies that do not accurately reflect the actual traffic patterns at intersections. As such, there is a need to address the data quality issues found in ATSPM datasets. The purpose of this paper is to evaluate the use of machine learning algorithms and statistical methods to predict traffic volume at intersections. Existing traffic volume data, along with additional metrics such as timestamps, weather conditions, crash data, and holidays, are evaluated to predict traffic volume and address the data anomalies present in ATSPM datasets. Two statistical methods and four machine learning algorithms are evaluated to determine their ability to predict traffic volumes. By comparing the root mean square error (RMSE) and the mean absolute percentage error (MAPE) between each model, the results demonstrate that the long short-term memory (LSTM) model exhibits the lowest error in predicting traffic volume compared with the other models. The LSTM model achieves an RMSE as low as 9.4 vehicles and an MAPE as low as 35%. By leveraging the LSTM model, traffic agencies can enhance the quality of their ATSPM data, enabling better decision-making for traffic operations by their engineers and planners.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵焱峥完成签到,获得积分10
刚刚
SYLH应助灰灰采纳,获得10
刚刚
动听草莓完成签到,获得积分10
刚刚
Hello应助ijiahe采纳,获得10
1秒前
123456777完成签到 ,获得积分10
1秒前
微风418发布了新的文献求助10
1秒前
2秒前
小龅牙吖完成签到,获得积分10
2秒前
优秀井完成签到,获得积分10
2秒前
小王子发布了新的文献求助10
2秒前
chenn完成签到 ,获得积分10
2秒前
迟大猫应助执着的仇血采纳,获得10
2秒前
坦率的夜玉完成签到,获得积分10
3秒前
Cruffin完成签到 ,获得积分10
3秒前
YOMU完成签到,获得积分10
3秒前
nana完成签到,获得积分10
3秒前
萌萌完成签到,获得积分10
3秒前
hai发布了新的文献求助10
3秒前
快快毕业完成签到 ,获得积分10
3秒前
Jeson完成签到,获得积分10
4秒前
重要的小刘完成签到,获得积分10
4秒前
柒辞完成签到,获得积分10
5秒前
zoe完成签到,获得积分10
5秒前
小飞飞完成签到,获得积分10
5秒前
小蛇玩发布了新的文献求助10
6秒前
边曦完成签到 ,获得积分0
6秒前
hammer完成签到,获得积分10
6秒前
儒雅一凤完成签到 ,获得积分10
6秒前
6秒前
lbw完成签到,获得积分10
7秒前
7秒前
称心凡霜完成签到,获得积分10
8秒前
8秒前
文章快快来应助kiki134采纳,获得10
8秒前
8秒前
JinGN完成签到,获得积分10
8秒前
谦让的小姜完成签到,获得积分10
10秒前
燕子坞完成签到,获得积分10
10秒前
甜蜜鹭洋完成签到 ,获得积分10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3550592
求助须知:如何正确求助?哪些是违规求助? 3126842
关于积分的说明 9371114
捐赠科研通 2826084
什么是DOI,文献DOI怎么找? 1553517
邀请新用户注册赠送积分活动 724906
科研通“疑难数据库(出版商)”最低求助积分说明 714494