LG-GNN: Local and Global Information-aware Graph Neural Network for default detection

计算机科学 人工神经网络 图形 数据挖掘 人工智能 模式识别(心理学) 理论计算机科学
作者
Yi Liu,Xuan Wang,Tao Meng,Wei Ai,Keqin Li
出处
期刊:Computers & Operations Research [Elsevier BV]
卷期号:169: 106738-106738
标识
DOI:10.1016/j.cor.2024.106738
摘要

Default detection, a crucial aspect of individual credit scoring, has attracted considerable attention in research. Previous approaches typically focus on classifying applicants using only explicit attributes, overlooking the importance of latent relations among them. Concurrently, graph-based techniques have emerged as promising tools for credit scoring. However, existing graph-based methods often need to be more accurate in aggregating information from limited neighbors, which can lead to misclassification when the target node has differently labeled neighbors. Motivated by these challenges, we propose a Local and Global Information-aware Graph Neural Network (LG-GNN) approach for default detection. By leveraging the loan applicant relation graph, LG-GNN dynamically learns the representation of the target node from both local and global perspectives. Furthermore, it adaptively fuses the information from these perspectives and employs contrastive learning to enhance feature variations. Extensive experiments demonstrate the superiority of LG-GNN over mainstream methods across several widely used default detection datasets. Specifically, LG-GNN achieves an average relative performance improvement of 47.9% compared to baselines. Moreover, compared to the most competitive default detection methods, LG-GNN exhibits an average performance improvement of 11.9%. Our code is publicly available at https://github.com/BERA-wx/LG-GNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ldyzz发布了新的文献求助10
3秒前
华仔应助无限的念梦采纳,获得10
4秒前
刘傲薇完成签到,获得积分20
4秒前
草莓雪酪发布了新的文献求助30
6秒前
Jasmie关注了科研通微信公众号
7秒前
Akim应助Scinature采纳,获得10
8秒前
安详的夏山完成签到,获得积分10
8秒前
阿翟完成签到,获得积分10
8秒前
8秒前
地瓜地瓜完成签到 ,获得积分10
9秒前
刘傲薇发布了新的文献求助30
11秒前
机智匪发布了新的文献求助10
12秒前
pencil123完成签到,获得积分10
13秒前
锤子姐发布了新的文献求助10
13秒前
14秒前
14秒前
LSH970829发布了新的文献求助10
18秒前
19秒前
Lucas应助机智匪采纳,获得10
19秒前
丘比特应助尊敬的凌晴采纳,获得10
20秒前
乐乐应助周萌采纳,获得10
22秒前
LSH970829完成签到,获得积分10
23秒前
Jasmie发布了新的文献求助10
24秒前
25秒前
完美世界应助锤子姐采纳,获得10
25秒前
ww123发布了新的文献求助10
30秒前
喔喔完成签到,获得积分10
30秒前
32秒前
我是老大应助PANDA采纳,获得10
32秒前
xiong完成签到 ,获得积分10
36秒前
船长完成签到,获得积分10
36秒前
39秒前
39秒前
图治完成签到,获得积分10
39秒前
41秒前
飘逸果汁完成签到,获得积分10
43秒前
刘玉梅完成签到,获得积分10
44秒前
PANDA发布了新的文献求助10
45秒前
Scinature发布了新的文献求助10
46秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997562
求助须知:如何正确求助?哪些是违规求助? 3537094
关于积分的说明 11270816
捐赠科研通 3276315
什么是DOI,文献DOI怎么找? 1806876
邀请新用户注册赠送积分活动 883554
科研通“疑难数据库(出版商)”最低求助积分说明 809975