LG-GNN: Local and Global Information-aware Graph Neural Network for default detection

计算机科学 人工神经网络 图形 数据挖掘 人工智能 模式识别(心理学) 理论计算机科学
作者
Yi Liu,Xuan Wang,Tao Meng,Wei Ai,Keqin Li
出处
期刊:Computers & Operations Research [Elsevier]
卷期号:169: 106738-106738
标识
DOI:10.1016/j.cor.2024.106738
摘要

Default detection, a crucial aspect of individual credit scoring, has attracted considerable attention in research. Previous approaches typically focus on classifying applicants using only explicit attributes, overlooking the importance of latent relations among them. Concurrently, graph-based techniques have emerged as promising tools for credit scoring. However, existing graph-based methods often need to be more accurate in aggregating information from limited neighbors, which can lead to misclassification when the target node has differently labeled neighbors. Motivated by these challenges, we propose a Local and Global Information-aware Graph Neural Network (LG-GNN) approach for default detection. By leveraging the loan applicant relation graph, LG-GNN dynamically learns the representation of the target node from both local and global perspectives. Furthermore, it adaptively fuses the information from these perspectives and employs contrastive learning to enhance feature variations. Extensive experiments demonstrate the superiority of LG-GNN over mainstream methods across several widely used default detection datasets. Specifically, LG-GNN achieves an average relative performance improvement of 47.9% compared to baselines. Moreover, compared to the most competitive default detection methods, LG-GNN exhibits an average performance improvement of 11.9%. Our code is publicly available at https://github.com/BERA-wx/LG-GNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bbj完成签到,获得积分10
刚刚
sea完成签到 ,获得积分10
1秒前
田様应助白鸽鸽采纳,获得10
2秒前
飞快的盼易完成签到,获得积分10
3秒前
4秒前
Xuhao23完成签到,获得积分10
4秒前
胡博士发布了新的文献求助10
6秒前
共享精神应助李文思采纳,获得10
6秒前
Dang1987完成签到,获得积分10
8秒前
8秒前
10秒前
10秒前
10秒前
11秒前
过冷风发布了新的文献求助10
13秒前
江边鸟发布了新的文献求助20
13秒前
36456657应助挽倾颜采纳,获得10
14秒前
14秒前
Zayn完成签到,获得积分10
14秒前
16秒前
mhl11应助jackie采纳,获得10
16秒前
传奇3应助szbllc采纳,获得30
16秒前
果果完成签到,获得积分10
16秒前
17秒前
bkagyin应助Zayn采纳,获得10
17秒前
18秒前
18秒前
36456657应助挽倾颜采纳,获得10
19秒前
JamesPei应助卷心菜采纳,获得10
19秒前
英勇涔完成签到 ,获得积分10
19秒前
可爱千兰完成签到,获得积分10
20秒前
Lakto发布了新的文献求助10
21秒前
julian190发布了新的文献求助10
21秒前
wangzai111完成签到,获得积分10
22秒前
毛毛完成签到,获得积分10
22秒前
24秒前
24秒前
25秒前
jackie完成签到,获得积分10
25秒前
26秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3254496
求助须知:如何正确求助?哪些是违规求助? 2896621
关于积分的说明 8293567
捐赠科研通 2565575
什么是DOI,文献DOI怎么找? 1393151
科研通“疑难数据库(出版商)”最低求助积分说明 652436
邀请新用户注册赠送积分活动 629972