材料科学
兴奋剂
护盾
佩多:嘘
电阻率和电导率
电导率
有机溶剂
溶剂
复合材料
化学工程
电磁屏蔽
光电子学
聚合物
物理化学
电气工程
有机化学
化学
工程类
作者
Hatef Yousefian,Amin Babaei-Ghazvini,Ali Akbar Isari,Seyyed Alireza Hashemi,Bishnu Acharya,Ahmadreza Ghaffarkhah,Mohammad Arjmand
标识
DOI:10.1016/j.surfin.2024.104481
摘要
The enhanced electrical conductivity of solvent-doped poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT:PSS) is attributed to the screening effect between PSS and PEDOT chains. Yet, the precise manner in which this effect influences the crystalline structure and conformation of PEDOT:PSS remains unclear. In this study, we utilize Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and Grazing-incidence wide-angle X-ray scattering (GIWAXS) to examine the conformational changes and two-dimensional (2D) crystalline structure of PEDOT:PSS when doped with a variety of solvents, including dimethyl sulfoxide (DMSO), ethylene glycol (EG), dimethylformamide (DMF), methanol (MeOH), ethanol (EtOH), tetrahydrofuran (THF), and acetone. Our observations unveil that solvent doping improves the electrical conductivity of PEDOT:PSS by modifying its crystalline structure. This alteration leads to a reduced inter-lamellar (d200) and π-π stacking distance (d010), facilitating the formation of densely packed and well-ordered PEDOT crystallites in both face-on and edge-on orientations. Moreover, this doping process enhances the transferability and mechanical properties of drop-casted films, resulting in a flexible and transferable electromagnetic interference (EMI) shield with exceptional total shielding effectiveness (SET) of 35.70 dB and specific shielding effectiveness (SSE/t) of 7105.34 dB cm2.g−1.
科研通智能强力驱动
Strongly Powered by AbleSci AI