Wood-inspired anisotropic hydrogel electrolyte with large modulus and low tortuosity realizing durable dendrite-free zinc-ion batteries

枝晶(数学) 电解质 曲折 材料科学 各向异性 纳米技术 复合材料 化学 冶金 多孔性 电极 数学 物理 物理化学 量子力学 几何学
作者
Jizhang Chen,Minfeng Chen,Hongli Chen,Ming Yang,Xiang Han,Dingtao Ma,Peixin Zhang,Ching‐Ping Wong
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:121 (21) 被引量:43
标识
DOI:10.1073/pnas.2322944121
摘要

While aqueous zinc-ion batteries exhibit great potential, their performance is impeded by zinc dendrites. Existing literature has proposed the use of hydrogel electrolytes to ameliorate this issue. Nevertheless, the mechanical attributes of hydrogel electrolytes, particularly their modulus, are suboptimal, primarily ascribed to the substantial water content. This drawback would severely restrict the dendrite-inhibiting efficacy, especially under large mass loadings of active materials. Inspired by the structural characteristics of wood, this study endeavors to fabricate the anisotropic carboxymethyl cellulose hydrogel electrolyte through directional freezing, salting-out effect, and compression reinforcement, aiming to maximize the modulus along the direction perpendicular to the electrode surface. The heightened modulus concurrently serves to suppress the vertical deposition of the intermediate product at the cathode. Meanwhile, the oriented channels with low tortuosity enabled by the anisotropic structure are beneficial to the ionic transport between the anode and cathode. Comparative analysis with an isotropic hydrogel sample reveals a marked enhancement in both modulus and ionic conductivity in the anisotropic hydrogel. This enhancement contributes to significantly improved zinc stripping/plating reversibility and mitigated electrochemical polarization. Additionally, a durable quasi-solid-state Zn//MnO 2 battery with noteworthy volumetric energy density is realized. This study offers unique perspectives for designing hydrogel electrolytes and augmenting battery performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
echo发布了新的文献求助10
1秒前
Ehan发布了新的文献求助10
2秒前
2秒前
小蘑菇应助不安善若采纳,获得10
2秒前
Flowey发布了新的文献求助10
4秒前
5秒前
5秒前
田镓栋发布了新的文献求助10
5秒前
Yolen LI完成签到,获得积分0
6秒前
cobo完成签到,获得积分10
6秒前
xiaoguo发布了新的文献求助10
7秒前
7秒前
9秒前
LisA__发布了新的文献求助10
9秒前
金角大王完成签到,获得积分10
10秒前
也无风雨也无晴完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
hsa_ID发布了新的文献求助10
12秒前
Justtry发布了新的文献求助10
13秒前
Flowey完成签到,获得积分20
14秒前
丘比特应助fortune采纳,获得10
15秒前
田镓栋完成签到,获得积分10
15秒前
greatsnow发布了新的文献求助10
16秒前
白开水完成签到,获得积分10
16秒前
16秒前
17秒前
guozizi发布了新的文献求助30
17秒前
xiaoguo完成签到,获得积分20
17秒前
华仔应助yoyo采纳,获得10
18秒前
熊儒恒完成签到,获得积分10
19秒前
19秒前
魏强发布了新的文献求助10
22秒前
22秒前
理躺丁真完成签到,获得积分10
23秒前
Criminology34应助赶路人采纳,获得10
23秒前
24秒前
zeannezg发布了新的文献求助10
25秒前
Dun完成签到,获得积分10
27秒前
27秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Oxford Learner's Pocket Word Skills 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5153393
求助须知:如何正确求助?哪些是违规求助? 4348981
关于积分的说明 13540659
捐赠科研通 4191526
什么是DOI,文献DOI怎么找? 2299002
邀请新用户注册赠送积分活动 1298954
关于科研通互助平台的介绍 1243960