Wood-inspired anisotropic hydrogel electrolyte with large modulus and low tortuosity realizing durable dendrite-free zinc-ion batteries

枝晶(数学) 电解质 曲折 材料科学 各向异性 纳米技术 复合材料 化学 冶金 多孔性 电极 数学 物理 物理化学 量子力学 几何学
作者
Jizhang Chen,Minfeng Chen,Hongli Chen,Ming Yang,Xiang Han,Dingtao Ma,Peixin Zhang,Ching‐Ping Wong
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:121 (21) 被引量:43
标识
DOI:10.1073/pnas.2322944121
摘要

While aqueous zinc-ion batteries exhibit great potential, their performance is impeded by zinc dendrites. Existing literature has proposed the use of hydrogel electrolytes to ameliorate this issue. Nevertheless, the mechanical attributes of hydrogel electrolytes, particularly their modulus, are suboptimal, primarily ascribed to the substantial water content. This drawback would severely restrict the dendrite-inhibiting efficacy, especially under large mass loadings of active materials. Inspired by the structural characteristics of wood, this study endeavors to fabricate the anisotropic carboxymethyl cellulose hydrogel electrolyte through directional freezing, salting-out effect, and compression reinforcement, aiming to maximize the modulus along the direction perpendicular to the electrode surface. The heightened modulus concurrently serves to suppress the vertical deposition of the intermediate product at the cathode. Meanwhile, the oriented channels with low tortuosity enabled by the anisotropic structure are beneficial to the ionic transport between the anode and cathode. Comparative analysis with an isotropic hydrogel sample reveals a marked enhancement in both modulus and ionic conductivity in the anisotropic hydrogel. This enhancement contributes to significantly improved zinc stripping/plating reversibility and mitigated electrochemical polarization. Additionally, a durable quasi-solid-state Zn//MnO 2 battery with noteworthy volumetric energy density is realized. This study offers unique perspectives for designing hydrogel electrolytes and augmenting battery performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RRR发布了新的文献求助10
刚刚
浮槎完成签到,获得积分10
1秒前
小妍姐姐发布了新的文献求助30
1秒前
幽默的沁发布了新的文献求助10
1秒前
lilili完成签到,获得积分10
2秒前
2秒前
2秒前
ax完成签到,获得积分10
3秒前
青年才俊发布了新的文献求助10
4秒前
liv发布了新的文献求助10
4秒前
lyx完成签到 ,获得积分10
4秒前
华仔应助小莽墩采纳,获得10
4秒前
月亮打盹儿完成签到,获得积分10
4秒前
vincentbioinfo完成签到,获得积分10
4秒前
chris完成签到,获得积分10
5秒前
科研通AI6应助李子园采纳,获得10
5秒前
yitian完成签到,获得积分10
5秒前
5秒前
景时完成签到,获得积分10
6秒前
卡皮巴拉桑完成签到,获得积分20
6秒前
仲达完成签到,获得积分10
7秒前
闪闪新梅完成签到,获得积分10
7秒前
xiaoqin完成签到,获得积分10
7秒前
psycho完成签到,获得积分10
7秒前
夏竟添完成签到,获得积分10
8秒前
糖果不甜完成签到,获得积分10
8秒前
潇洒莞发布了新的文献求助30
8秒前
饱满如风完成签到,获得积分20
8秒前
8秒前
yuzhi完成签到,获得积分10
8秒前
动听的笑南完成签到,获得积分10
8秒前
汉堡包应助武雨珍采纳,获得10
9秒前
9秒前
李旭完成签到,获得积分10
10秒前
菠萝贺贺完成签到,获得积分10
10秒前
FashionBoy应助小于采纳,获得10
10秒前
10秒前
han完成签到,获得积分10
10秒前
CodeCraft应助小鱼儿采纳,获得30
11秒前
李健的小迷弟应助yitian采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5439303
求助须知:如何正确求助?哪些是违规求助? 4550351
关于积分的说明 14224204
捐赠科研通 4471300
什么是DOI,文献DOI怎么找? 2450329
邀请新用户注册赠送积分活动 1441193
关于科研通互助平台的介绍 1417863