枝晶(数学)
电解质
曲折
材料科学
各向异性
锌
纳米技术
复合材料
化学
冶金
多孔性
电极
数学
物理
几何学
物理化学
量子力学
作者
Jizhang Chen,Minfeng Chen,Hongli Chen,Ming Yang,Xiang Han,Dingtao Ma,Peixin Zhang,Ching‐Ping Wong
标识
DOI:10.1073/pnas.2322944121
摘要
While aqueous zinc-ion batteries exhibit great potential, their performance is impeded by zinc dendrites. Existing literature has proposed the use of hydrogel electrolytes to ameliorate this issue. Nevertheless, the mechanical attributes of hydrogel electrolytes, particularly their modulus, are suboptimal, primarily ascribed to the substantial water content. This drawback would severely restrict the dendrite-inhibiting efficacy, especially under large mass loadings of active materials. Inspired by the structural characteristics of wood, this study endeavors to fabricate the anisotropic carboxymethyl cellulose hydrogel electrolyte through directional freezing, salting-out effect, and compression reinforcement, aiming to maximize the modulus along the direction perpendicular to the electrode surface. The heightened modulus concurrently serves to suppress the vertical deposition of the intermediate product at the cathode. Meanwhile, the oriented channels with low tortuosity enabled by the anisotropic structure are beneficial to the ionic transport between the anode and cathode. Comparative analysis with an isotropic hydrogel sample reveals a marked enhancement in both modulus and ionic conductivity in the anisotropic hydrogel. This enhancement contributes to significantly improved zinc stripping/plating reversibility and mitigated electrochemical polarization. Additionally, a durable quasi-solid-state Zn//MnO
科研通智能强力驱动
Strongly Powered by AbleSci AI