Hyperbolic Pre-Trained Language Model

缩放比例 双曲空间 欧几里德几何 编码(集合论) 多样性(控制论) 代表(政治) 编码(内存) 理论计算机科学 空格(标点符号) 特征(语言学) 欧几里德距离 自然语言处理 欧几里得空间 计算机科学 钥匙(锁) 源代码 语言模型 语言学 人工智能 纯数学 数学 程序设计语言 哲学 几何学 法学 集合(抽象数据类型) 计算机安全 操作系统 政治学 政治
作者
Weize Chen,Xu Han,Yankai Lin,Kaichen He,Ruobing Xie,Jie Zhou,Zhiyuan Liu,Maosong Sun
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 3101-3112 被引量:2
标识
DOI:10.1109/taslp.2024.3407575
摘要

In recent years, we have witnessed significant improvements in pre-trained language models (PLM) brought about by the scaling of parameter sizes and data amounts. However, this also brings high computational and storage costs. In this paper, we present a new direction to improve PLMs without scaling parameters and data: adopting a geometric feature space that is more suitable for encoding the intrinsic structured features of text. Although text is generally considered unstructured data, it possesses rich intrinsic structured features that signify syntactic and semantic relationships. Leveraging these structured features is vital for text understanding. Given that structured features are better encoded in hyperbolic spaces than in the Euclidean spaces used by conventional PLMs, we propose that PLMs should operate entirely within hyperbolic spaces. Our experiments demonstrate the superiority of hyperbolic PLMs over Euclidean PLMs across a wide variety of tasks, using the same parameter and data settings. This suggests that altering the geometry of model representation is a promising direction for model enhancement. The code is released at https://github.com/thunlp/hyperbolic_llm
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dddd发布了新的文献求助10
刚刚
Nara2021发布了新的文献求助10
2秒前
3秒前
183完成签到,获得积分10
4秒前
石头爱科研完成签到,获得积分10
4秒前
5秒前
科研通AI6.1应助bunny采纳,获得10
5秒前
若水完成签到,获得积分0
5秒前
6秒前
cherish完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助30
7秒前
鲨鱼游泳教练完成签到,获得积分10
9秒前
11秒前
12秒前
lsrlsr发布了新的文献求助10
12秒前
华仔应助傻傻的雅寒采纳,获得10
13秒前
王蕊发布了新的文献求助10
13秒前
伶俐鹤轩完成签到,获得积分10
14秒前
SciGPT应助杨小鸿采纳,获得10
15秒前
BIGDUCK发布了新的文献求助10
15秒前
王者归来完成签到,获得积分10
16秒前
伶俐鹤轩发布了新的文献求助20
17秒前
zhao完成签到,获得积分10
18秒前
超级手套完成签到,获得积分10
19秒前
Destiny完成签到,获得积分10
20秒前
htt完成签到,获得积分20
21秒前
22秒前
22秒前
jkdzp完成签到 ,获得积分10
22秒前
科研通AI6.1应助欢欢采纳,获得10
22秒前
23秒前
23秒前
25秒前
Itazu完成签到,获得积分10
25秒前
26秒前
公西焱发布了新的文献求助10
26秒前
leemiii完成签到 ,获得积分10
27秒前
28秒前
懦弱的含芙完成签到,获得积分10
29秒前
爱吃瑞士卷完成签到 ,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742197
求助须知:如何正确求助?哪些是违规求助? 5407018
关于积分的说明 15344388
捐赠科研通 4883635
什么是DOI,文献DOI怎么找? 2625185
邀请新用户注册赠送积分活动 1574043
关于科研通互助平台的介绍 1530978