POT-YOLO: Real-Time Road Potholes Detection using Edge Segmentation based Yolo V8 Network

计算机视觉 分割 人工智能 计算机科学 图像分割 遥感 地质学
作者
N Bhavana,Mallikarjun M Kodabagi,B Muthu Kumar,P. Ajay,N. Muthukumaran,A. Ahilan
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (15): 24802-24809
标识
DOI:10.1109/jsen.2024.3399008
摘要

Detecting and avoiding potholes is a more challenging task in India, due to the poor quality of construction materials used in road privilege systems. Identifying and repairing potholes as soon as possible is crucial to preventing accidents. Roadside potholes can cause serious traffic safety problems and damage automobiles. In this paper a novel Pothole detection using Yolov8 (POT-YOLO) has been introduced for detecting the types of potholes such as Cracks, Oil stains, Patches, Pebbles using POT-YOLOv8. Initially, pothole videos are converted into frames of images for further processing. To reduce distortions, these frames are pre-processed with the Contrast Stretching Adaptive Gaussian Star Filter (CAGF). Finally, the pre-processed images are identifying the region of pothole using Sobal edge detector and detect the pothole using YOLOv8. The POT-YOLO approach was simulated with Python code. The simulation result demonstrate that the POT-YOLO methods performance was measured in terms of ACU, PRE, RCL, and F1S. The POT-YOLO achieves an overall ACU of 99.10%. Additionally, POT-YOLO model achieves 97.6 % precision, 93.52 % recall, and 90.2% F1-score. In the comparison, the POT-YOLOv8 network improves the better ACU range than existing networks such as Faster RCNN, SSD, and mask R CNN. The POT-YOLO approach improves the overall ACU by 12.3%, 0.97 %, and 1.4 % better than ML based DeepBus, Automatic color image analysis using DNN, and ODRNN respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzzz发布了新的文献求助10
刚刚
WLL完成签到,获得积分10
刚刚
sunny完成签到,获得积分10
1秒前
LINHAN发布了新的文献求助10
1秒前
3秒前
4秒前
4秒前
雪生在无人荒野完成签到,获得积分10
7秒前
LINHAN完成签到,获得积分10
7秒前
李健应助斑马兽采纳,获得10
7秒前
朴实如冰关注了科研通微信公众号
8秒前
研友_nqa7On发布了新的文献求助10
8秒前
8秒前
飞飞鱼关注了科研通微信公众号
10秒前
pengrui0911完成签到 ,获得积分10
11秒前
Hollow完成签到,获得积分10
11秒前
希望天下0贩的0应助某某采纳,获得10
13秒前
权志龙爱科研完成签到,获得积分10
15秒前
16秒前
zzzz完成签到,获得积分20
18秒前
19秒前
xiazhq完成签到,获得积分10
19秒前
19秒前
万能图书馆应助研友_nqa7On采纳,获得10
20秒前
WQ发布了新的文献求助10
22秒前
紧张的友灵完成签到,获得积分10
28秒前
愉快乐瑶完成签到,获得积分10
30秒前
春天完成签到,获得积分10
31秒前
33秒前
赘婿应助whuhustwit采纳,获得10
34秒前
35秒前
研友_nqa7On完成签到,获得积分10
35秒前
赘婿应助杜欢采纳,获得10
35秒前
阿怪发布了新的文献求助10
36秒前
852应助怡然的迎波采纳,获得10
38秒前
米妮发布了新的文献求助10
39秒前
nanhaishenmi发布了新的文献求助50
39秒前
ParkMoonJ发布了新的文献求助10
42秒前
共享精神应助1234采纳,获得10
43秒前
伊小美完成签到,获得积分10
43秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Heteroatom-Doped Carbon Allotropes: Progress in Synthesis, Characterization, and Applications 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159874
求助须知:如何正确求助?哪些是违规求助? 2810842
关于积分的说明 7889629
捐赠科研通 2469910
什么是DOI,文献DOI怎么找? 1315243
科研通“疑难数据库(出版商)”最低求助积分说明 630742
版权声明 602012