POT-YOLO: Real-Time Road Potholes Detection using Edge Segmentation based Yolo V8 Network

计算机视觉 分割 人工智能 计算机科学 图像分割 遥感 地质学
作者
N Bhavana,Mallikarjun M Kodabagi,B Muthu Kumar,P. Ajay,N. Muthukumaran,A. Ahilan
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (15): 24802-24809 被引量:6
标识
DOI:10.1109/jsen.2024.3399008
摘要

Detecting and avoiding potholes is a more challenging task in India, due to the poor quality of construction materials used in road privilege systems. Identifying and repairing potholes as soon as possible is crucial to preventing accidents. Roadside potholes can cause serious traffic safety problems and damage automobiles. In this paper a novel Pothole detection using Yolov8 (POT-YOLO) has been introduced for detecting the types of potholes such as Cracks, Oil stains, Patches, Pebbles using POT-YOLOv8. Initially, pothole videos are converted into frames of images for further processing. To reduce distortions, these frames are pre-processed with the Contrast Stretching Adaptive Gaussian Star Filter (CAGF). Finally, the pre-processed images are identifying the region of pothole using Sobal edge detector and detect the pothole using YOLOv8. The POT-YOLO approach was simulated with Python code. The simulation result demonstrate that the POT-YOLO methods performance was measured in terms of ACU, PRE, RCL, and F1S. The POT-YOLO achieves an overall ACU of 99.10%. Additionally, POT-YOLO model achieves 97.6 % precision, 93.52 % recall, and 90.2% F1-score. In the comparison, the POT-YOLOv8 network improves the better ACU range than existing networks such as Faster RCNN, SSD, and mask R CNN. The POT-YOLO approach improves the overall ACU by 12.3%, 0.97 %, and 1.4 % better than ML based DeepBus, Automatic color image analysis using DNN, and ODRNN respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
R先生完成签到,获得积分10
3秒前
小土豆完成签到,获得积分10
3秒前
申小萌完成签到,获得积分10
3秒前
饭小心发布了新的文献求助10
3秒前
kevindeng完成签到,获得积分10
4秒前
4秒前
4秒前
肖俊彦发布了新的文献求助10
4秒前
情怀应助星星泡饭采纳,获得10
4秒前
4秒前
5秒前
5秒前
云_123发布了新的文献求助10
6秒前
所所应助德德采纳,获得10
6秒前
衔尾蛇完成签到,获得积分10
6秒前
烟花应助幸福胡萝卜采纳,获得10
7秒前
shi hui应助乐观发卡采纳,获得10
7秒前
特兰克斯完成签到,获得积分20
7秒前
米斯特刘完成签到,获得积分20
8秒前
沫沫发布了新的文献求助10
8秒前
R先生发布了新的文献求助50
8秒前
通通通关注了科研通微信公众号
8秒前
snowdrift发布了新的文献求助10
8秒前
英姑应助北挽采纳,获得200
8秒前
kevindeng发布了新的文献求助20
9秒前
yx发布了新的文献求助10
9秒前
10秒前
6680668发布了新的文献求助10
10秒前
baobaonaixi完成签到,获得积分10
10秒前
10秒前
10秒前
三石完成签到 ,获得积分10
10秒前
11秒前
12秒前
12秒前
DAYTOY完成签到,获得积分10
12秒前
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762