Learning compact and overlap-biased interactions for point cloud registration

计算机科学 点云 云计算 人工智能 模棱两可 瓶颈 水准点(测量) 特征学习 深度学习 特征(语言学) 机器学习 数据挖掘 操作系统 语言学 哲学 大地测量学 嵌入式系统 程序设计语言 地理
作者
Lin Guo,Zhi Chen,Senmao Cheng,Fan Yang,Wenbing Tao
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:598: 127949-127949
标识
DOI:10.1016/j.neucom.2024.127949
摘要

Point cloud registration is a fundamental task in computer vision. Recent Transformer based methods for point cloud registration take advantage of the interaction modeling ability of the attention operation. However, feature ambiguity and low overlap are still the bottleneck in real scenes point cloud registration. In this paper, we present a new neural network to solve these two problems in Transformer architecture. First, we propose an Optimal Transport guided Cross Attention (OT-CA) to build compact interactions in CA which can mitigating the feature ambiguity problem. It uses a Spatial Consistency guided cost Regularization (SCR) to build the cost for the optimal transport problem, and get the weight matrix of CA by solving it. The structure information and more reasonable interactions can alleviate the feature ambiguity problem with fewer computing resources. Meanwhile, we propose a Separate-and-Joint Overlap Prediction module to solve the low-overlap problem. It adopts separate branches and training steps for feature matching and overlap prediction to reduce negative impacts between these two tasks, and adopts a joint training process to make full use of overlap information for learning better feature matching. Finally, the proposed modules are embedded into a coarse-to-fine pipeline. Our method shows state-of-the-art performance on three benchmark datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
半两月光发布了新的文献求助10
刚刚
刚刚
刚刚
情怀应助Lwh采纳,获得10
1秒前
李健的粉丝团团长应助zz采纳,获得10
1秒前
2秒前
苹果觅波发布了新的文献求助10
3秒前
3秒前
陈小花发布了新的文献求助10
4秒前
4秒前
爆米花应助鲜艳的烧鹅采纳,获得10
4秒前
6秒前
7秒前
seven发布了新的文献求助10
7秒前
上官若男应助Dou采纳,获得10
7秒前
shine发布了新的文献求助10
7秒前
RXwang发布了新的文献求助10
8秒前
9秒前
9秒前
11秒前
12秒前
zz321完成签到,获得积分10
12秒前
13秒前
文艺的兔子完成签到 ,获得积分10
13秒前
FashionBoy应助yyds采纳,获得10
14秒前
LTY发布了新的文献求助10
14秒前
dongqing12311完成签到,获得积分10
15秒前
缓慢枕头完成签到,获得积分20
16秒前
黄bb应助芒果棉花糖采纳,获得10
16秒前
韩寒发布了新的文献求助10
17秒前
17秒前
李浩发布了新的文献求助10
19秒前
qyfyyds00发布了新的文献求助10
21秒前
21秒前
22秒前
25秒前
123123发布了新的文献求助10
25秒前
ysergling完成签到,获得积分20
26秒前
脑洞疼应助光亮惜寒采纳,获得30
26秒前
乐乐应助LTY采纳,获得10
28秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3745812
求助须知:如何正确求助?哪些是违规求助? 3288765
关于积分的说明 10060476
捐赠科研通 3004943
什么是DOI,文献DOI怎么找? 1650009
邀请新用户注册赠送积分活动 785662
科研通“疑难数据库(出版商)”最低求助积分说明 751204