The mediating role of self-regulated online learning behaviors: Exploring the impact of personality traits on student engagement

心理学 五大性格特征 自我效能感 自主学习 教育技术 人格 学生参与度 社会心理学 数学教育
作者
Ahmet Kara,Funda Ergüleç,Esra Eren
出处
期刊:Education and Information Technologies [Springer Nature]
标识
DOI:10.1007/s10639-024-12755-3
摘要

Abstract Online learning environments have become increasingly prevalent in higher education, necessitating an understanding of factors influencing student engagement. This study examines the mediating role of self-regulated online learning in the relationship between five-factor personality traits and student engagement among university students. A sample of 437 university students from educational sciences, social sciences, and health sciences disciplines participated in the study. Data were collected using ‘The Big Five Inventory’ to assess personality traits, the ‘Self-Regulated Online Learning Questionnaire’ to measure self-regulated online learning, and the ‘Student Engagement Scale in the Online Learning Environment’ to evaluate student engagement. Structural equation modeling with bootstrap analysis was employed to analyze the data. The study findings indicate that the five factor personality traits significantly predict self-regulated online learning. Furthermore, self-regulated online learning is a significant predictor of students’ engagement in the online learning environment. Additionally, the five factor personality traits are found to be significant predictors of student engagement in the online learning environment. Lastly, self-regulated online learning plays a partially mediating role in the relationship between the five factor personality traits and student engagement in the online learning environment. This study underscores the importance of considering individual differences in personality traits and fostering self-regulated learning strategies to enhance student engagement in online learning environments. Understanding these dynamics can inform the design of effective interventions aimed at improving student outcomes in online education.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
amo完成签到,获得积分10
刚刚
kk摆烂完成签到,获得积分10
刚刚
1秒前
充电宝应助小叮当采纳,获得10
1秒前
完美世界应助ryen采纳,获得10
2秒前
2秒前
fei完成签到,获得积分10
3秒前
5秒前
刘玉梅完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
6秒前
肖淑美完成签到 ,获得积分10
7秒前
情怀应助刘媛采纳,获得10
8秒前
9秒前
ryen完成签到,获得积分10
9秒前
10秒前
10秒前
14秒前
鸡腿战神发布了新的文献求助10
14秒前
xiaowang完成签到,获得积分10
14秒前
kryptonite完成签到 ,获得积分10
15秒前
15秒前
余嚣发布了新的文献求助10
15秒前
顺心梦山完成签到,获得积分10
17秒前
19秒前
刘媛发布了新的文献求助10
19秒前
ZZZKKK完成签到 ,获得积分10
20秒前
dou完成签到 ,获得积分10
20秒前
Summer发布了新的文献求助20
21秒前
刘媛完成签到,获得积分20
25秒前
霸气的梦露完成签到,获得积分10
25秒前
luochen完成签到,获得积分10
27秒前
科研通AI2S应助陈永伟采纳,获得10
27秒前
花样年华完成签到,获得积分10
27秒前
wyr完成签到,获得积分10
29秒前
doo完成签到,获得积分10
29秒前
UniqConway完成签到,获得积分10
31秒前
GGGGEEEE应助AGS·ZBC采纳,获得10
32秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3258214
求助须知:如何正确求助?哪些是违规求助? 2899987
关于积分的说明 8308585
捐赠科研通 2569242
什么是DOI,文献DOI怎么找? 1395567
科研通“疑难数据库(出版商)”最低求助积分说明 653130
邀请新用户注册赠送积分活动 631049