Multimodal Graph Contrastive Learning for Multimedia-Based Recommendation

计算机科学 图形 情报检索 偏好学习 推荐系统 偏爱 人工智能 自然语言处理 多媒体 人机交互 机器学习 理论计算机科学 经济 微观经济学
作者
Kang Liu,Feng Xue,Dan Guo,Peijie Sun,Shengsheng Qian,Richang Hong
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 9343-9355 被引量:12
标识
DOI:10.1109/tmm.2023.3251108
摘要

Multimedia-based recommendation is a challenging task that requires not only learning collaborative signals from user-item interaction, but also capturing modality-specific user interest clues from complex multimedia content. Though significant progress on this challenge has been made, we argue that current solutions remain limited by multimodal noise contamination. Specifically, a considerable proportion of multimedia content is irrelevant to the user preference, such as the background, overall layout, and brightness of images; the word order and semantic-free words in titles; etc . We take this irrelevant information as noise contamination to discover user preferences. Moreover, most recent research has been conducted by graph learning. This means that noise is diffused into the user and item representations with the message propagation; the contamination influence is further amplified. To tackle this problem, we develop a novel framework named Multimodal Graph Contrastive Learning (MGCL), which captures collaborative signals from interactions and uses visual and textual modalities to respectively extract modality-specific user preference clues. The key idea of MGCL involves two aspects: First, to alleviate noise contamination during graph learning, we construct three parallel graph convolution networks to independently generate three types of user and item representations, containing collaborative signals, visual preference clues, and textual preference clues. Second, to eliminate as much preference-independent noisy information as possible from the generated representations, we incorporate sufficient self-supervised signals into the model optimization with the help of contrastive learning, thus enhancing the expressiveness of the user and item representations. Note that MGCL is not limited to graph learning schema, but also can be applied to most matrix factorization methods. We conduct extensive experiments on three public datasets to validate the effectiveness and scalability of MGCL 1 We release the codes of MGCL at https://github.com/hfutmars/MGCL. .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
腼腆的修杰完成签到 ,获得积分10
2秒前
5秒前
赵梦然发布了新的文献求助10
5秒前
久伴久爱完成签到 ,获得积分10
6秒前
6秒前
7秒前
8秒前
小可爱完成签到,获得积分10
8秒前
香蕉觅云应助幼安k采纳,获得10
9秒前
10秒前
10秒前
小二郎应助奋斗跳跳糖采纳,获得10
11秒前
whatever发布了新的文献求助10
11秒前
宝贝完成签到,获得积分10
12秒前
君莫笑发布了新的文献求助10
12秒前
sweet发布了新的文献求助200
12秒前
12秒前
田様应助平常的凝蕊采纳,获得10
13秒前
ShenLi发布了新的文献求助80
15秒前
Risonbex完成签到 ,获得积分10
16秒前
友好灵松完成签到,获得积分10
18秒前
完美世界应助赵淑晴采纳,获得10
18秒前
Risonbex关注了科研通微信公众号
19秒前
19秒前
Akim应助科研通管家采纳,获得10
20秒前
lv应助科研通管家采纳,获得10
20秒前
wanci应助科研通管家采纳,获得30
20秒前
思源应助科研通管家采纳,获得10
20秒前
英俊的铭应助科研通管家采纳,获得10
20秒前
江沫应助科研通管家采纳,获得10
20秒前
20秒前
爆米花应助科研通管家采纳,获得10
21秒前
竹萱完成签到,获得积分20
21秒前
21秒前
研友_Y59785应助科研通管家采纳,获得10
21秒前
研友_Y59785应助科研通管家采纳,获得10
21秒前
Jasper应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
21秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997687
求助须知:如何正确求助?哪些是违规求助? 3537226
关于积分的说明 11271044
捐赠科研通 3276377
什么是DOI,文献DOI怎么找? 1806965
邀请新用户注册赠送积分活动 883609
科研通“疑难数据库(出版商)”最低求助积分说明 809975