Multimodal Graph Contrastive Learning for Multimedia-Based Recommendation

计算机科学 图形 情报检索 偏好学习 推荐系统 偏爱 人工智能 自然语言处理 多媒体 人机交互 机器学习 理论计算机科学 经济 微观经济学
作者
Kang Liu,Feng Xue,Dan Guo,Peijie Sun,Shengsheng Qian,Richang Hong
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 9343-9355 被引量:62
标识
DOI:10.1109/tmm.2023.3251108
摘要

Multimedia-based recommendation is a challenging task that requires not only learning collaborative signals from user-item interaction, but also capturing modality-specific user interest clues from complex multimedia content. Though significant progress on this challenge has been made, we argue that current solutions remain limited by multimodal noise contamination. Specifically, a considerable proportion of multimedia content is irrelevant to the user preference, such as the background, overall layout, and brightness of images; the word order and semantic-free words in titles; etc . We take this irrelevant information as noise contamination to discover user preferences. Moreover, most recent research has been conducted by graph learning. This means that noise is diffused into the user and item representations with the message propagation; the contamination influence is further amplified. To tackle this problem, we develop a novel framework named Multimodal Graph Contrastive Learning (MGCL), which captures collaborative signals from interactions and uses visual and textual modalities to respectively extract modality-specific user preference clues. The key idea of MGCL involves two aspects: First, to alleviate noise contamination during graph learning, we construct three parallel graph convolution networks to independently generate three types of user and item representations, containing collaborative signals, visual preference clues, and textual preference clues. Second, to eliminate as much preference-independent noisy information as possible from the generated representations, we incorporate sufficient self-supervised signals into the model optimization with the help of contrastive learning, thus enhancing the expressiveness of the user and item representations. Note that MGCL is not limited to graph learning schema, but also can be applied to most matrix factorization methods. We conduct extensive experiments on three public datasets to validate the effectiveness and scalability of MGCL 1 We release the codes of MGCL at https://github.com/hfutmars/MGCL. .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Qinzhiyuan1990完成签到 ,获得积分10
刚刚
铱凡完成签到,获得积分10
1秒前
weeqe完成签到,获得积分10
1秒前
玄机发布了新的文献求助10
1秒前
WATQ完成签到,获得积分10
2秒前
Yangfan发布了新的文献求助10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
Mende发布了新的文献求助10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得30
2秒前
2秒前
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
追寻月饼完成签到,获得积分10
2秒前
lw不好找完成签到 ,获得积分10
2秒前
2秒前
3秒前
老迟到的芹菜完成签到,获得积分10
3秒前
赛特新思完成签到,获得积分10
3秒前
小二郎应助mumian采纳,获得10
3秒前
雪时晴完成签到,获得积分10
3秒前
4秒前
1177完成签到,获得积分10
4秒前
拾柒发布了新的文献求助10
4秒前
4秒前
桐桐应助曾经的白猫采纳,获得10
5秒前
lidm完成签到,获得积分10
5秒前
喜悦发卡完成签到,获得积分10
5秒前
开朗访曼发布了新的文献求助10
5秒前
兴十一完成签到,获得积分20
5秒前
liu完成签到,获得积分10
6秒前
知了完成签到 ,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
momi完成签到,获得积分10
7秒前
lw不好找关注了科研通微信公众号
7秒前
无花果应助乐观耳机采纳,获得30
7秒前
纵是百万大军又如何完成签到,获得积分10
8秒前
8秒前
7788999完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573946
求助须知:如何正确求助?哪些是违规求助? 4660289
关于积分的说明 14728668
捐赠科研通 4600067
什么是DOI,文献DOI怎么找? 2524676
邀请新用户注册赠送积分活动 1495011
关于科研通互助平台的介绍 1465006