Multimodal Graph Contrastive Learning for Multimedia-Based Recommendation

计算机科学 图形 情报检索 偏好学习 推荐系统 偏爱 人工智能 自然语言处理 多媒体 人机交互 机器学习 理论计算机科学 经济 微观经济学
作者
Kang Liu,Feng Xue,Dan Guo,Peijie Sun,Shengsheng Qian,Richang Hong
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 9343-9355 被引量:12
标识
DOI:10.1109/tmm.2023.3251108
摘要

Multimedia-based recommendation is a challenging task that requires not only learning collaborative signals from user-item interaction, but also capturing modality-specific user interest clues from complex multimedia content. Though significant progress on this challenge has been made, we argue that current solutions remain limited by multimodal noise contamination. Specifically, a considerable proportion of multimedia content is irrelevant to the user preference, such as the background, overall layout, and brightness of images; the word order and semantic-free words in titles; etc . We take this irrelevant information as noise contamination to discover user preferences. Moreover, most recent research has been conducted by graph learning. This means that noise is diffused into the user and item representations with the message propagation; the contamination influence is further amplified. To tackle this problem, we develop a novel framework named Multimodal Graph Contrastive Learning (MGCL), which captures collaborative signals from interactions and uses visual and textual modalities to respectively extract modality-specific user preference clues. The key idea of MGCL involves two aspects: First, to alleviate noise contamination during graph learning, we construct three parallel graph convolution networks to independently generate three types of user and item representations, containing collaborative signals, visual preference clues, and textual preference clues. Second, to eliminate as much preference-independent noisy information as possible from the generated representations, we incorporate sufficient self-supervised signals into the model optimization with the help of contrastive learning, thus enhancing the expressiveness of the user and item representations. Note that MGCL is not limited to graph learning schema, but also can be applied to most matrix factorization methods. We conduct extensive experiments on three public datasets to validate the effectiveness and scalability of MGCL 1 We release the codes of MGCL at https://github.com/hfutmars/MGCL. .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助Annie采纳,获得10
刚刚
星辰大海应助土行孙采纳,获得10
1秒前
1秒前
小马甲应助幻月采纳,获得10
1秒前
互助遵法尚德应助zai采纳,获得10
1秒前
蔺不平发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
匆匆完成签到 ,获得积分10
4秒前
巴啦啦完成签到 ,获得积分20
5秒前
LL发布了新的文献求助10
6秒前
林夕儿完成签到 ,获得积分10
7秒前
悦耳孤萍发布了新的文献求助10
8秒前
10秒前
10秒前
华仔应助小杨采纳,获得10
10秒前
CipherSage应助小小学神采纳,获得10
13秒前
情怀应助于夜柳采纳,获得10
14秒前
15秒前
顾矜应助OuO采纳,获得10
15秒前
16秒前
Joy完成签到 ,获得积分10
17秒前
小菜完成签到,获得积分10
17秒前
19秒前
香蕉觅云应助1592541采纳,获得10
19秒前
19秒前
Cullen发布了新的文献求助10
21秒前
21秒前
oceanao应助若初拾光采纳,获得10
21秒前
汉堡包应助kirren采纳,获得10
22秒前
Ws完成签到,获得积分10
23秒前
23秒前
bkagyin应助乐乐乐乐乐乐采纳,获得10
24秒前
77完成签到,获得积分10
25秒前
26秒前
Tina发布了新的文献求助10
26秒前
27秒前
27秒前
花痴的骁完成签到 ,获得积分10
28秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161216
求助须知:如何正确求助?哪些是违规求助? 2812648
关于积分的说明 7895876
捐赠科研通 2471484
什么是DOI,文献DOI怎么找? 1316042
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602112