Bayesian Deep Learning for Hyperspectral Image Classification With Low Uncertainty

人工智能 计算机科学 贝叶斯概率 机器学习 高光谱成像 深度学习 联营 特征提取 模式识别(心理学)
作者
Xin He,Yushi Chen,Lingbo Huang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:1
标识
DOI:10.1109/tgrs.2023.3257865
摘要

In recent years, deep learning models have been widely used for hyperspectral image (HSI) classification and most of existing deep learning-based methods merely focused on high classification accuracy. However, in real applications, classification with low uncertainty matters as much as accurate classification. Unfortunately, existing methods fail to consider uncertainty. To tackle this challenge, for the first time, Bayesian deep learning (BDL) is investigated to analyze the model uncertainty for HSI classification. Specifically, first, at the feature extraction stage, an HSI classification framework based on BDL, which contains two Bayesian Gabor layers and a global pooling layer (i.e., BDL-G 2 ), is proposed. In BDL-G 2 , parameters in Gabor layers are sampled from the Gaussian distribution. The proposed BDL-G 2 not only provides the uncertainty estimation, but also strengthens the structure characteristic (i.e., texture) of HSI. Second, to model the uncertainty at the final classification stage, BDL-G 2 is combined with a Bayesian fully-connected layer (i.e., BDL-G 2 -BFL), where the parameters’ distribution is adjusted adaptively. In the proposed BDL-G 2 -BFL, the uncertainty at feature extraction and classification stages are both captured, and a whole uncertainty estimation framework is established. Experimental results on the three public HSI datasets demonstrates the superiority in both accuracy and uncertainty. The proposed Bayesian deep learning-based methods pioneer a new direction and provide useful inspiration and experience for practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助感人的心采纳,获得10
刚刚
Apple完成签到,获得积分10
刚刚
态度完成签到,获得积分10
刚刚
夏侯仪完成签到,获得积分10
1秒前
gxm完成签到,获得积分10
1秒前
休思完成签到,获得积分10
1秒前
1秒前
feng发布了新的文献求助10
1秒前
Lee完成签到,获得积分10
1秒前
2秒前
2秒前
刘澄伊完成签到,获得积分10
2秒前
2秒前
lm0703完成签到,获得积分0
2秒前
3秒前
3秒前
油焖青椒完成签到,获得积分20
5秒前
Akim应助Evangeline993采纳,获得10
6秒前
黄元元完成签到,获得积分10
7秒前
哎嘿应助Jeffrey采纳,获得10
7秒前
xingyuan完成签到,获得积分10
8秒前
称心不尤发布了新的文献求助10
8秒前
JamesPei应助球球啦采纳,获得10
8秒前
xiaowang发布了新的文献求助10
8秒前
无心的迎波完成签到,获得积分20
8秒前
虚心岂愈完成签到,获得积分10
10秒前
ershaj完成签到,获得积分10
10秒前
10秒前
nengzou完成签到 ,获得积分10
11秒前
nana发布了新的文献求助10
11秒前
苏木发布了新的文献求助10
12秒前
12秒前
12秒前
123完成签到,获得积分20
13秒前
13秒前
能毕业完成签到,获得积分10
13秒前
桐桐应助123456qi采纳,获得10
14秒前
斯文败类应助心斋采纳,获得10
14秒前
TIANTIAN发布了新的文献求助10
14秒前
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151290
求助须知:如何正确求助?哪些是违规求助? 2802726
关于积分的说明 7850119
捐赠科研通 2460164
什么是DOI,文献DOI怎么找? 1309586
科研通“疑难数据库(出版商)”最低求助积分说明 628975
版权声明 601760