Bayesian Deep Learning for Hyperspectral Image Classification With Low Uncertainty

人工智能 计算机科学 贝叶斯概率 机器学习 高光谱成像 深度学习 联营 特征提取 模式识别(心理学)
作者
Xin He,Yushi Chen,Lingbo Huang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:1
标识
DOI:10.1109/tgrs.2023.3257865
摘要

In recent years, deep learning models have been widely used for hyperspectral image (HSI) classification and most of existing deep learning-based methods merely focused on high classification accuracy. However, in real applications, classification with low uncertainty matters as much as accurate classification. Unfortunately, existing methods fail to consider uncertainty. To tackle this challenge, for the first time, Bayesian deep learning (BDL) is investigated to analyze the model uncertainty for HSI classification. Specifically, first, at the feature extraction stage, an HSI classification framework based on BDL, which contains two Bayesian Gabor layers and a global pooling layer (i.e., BDL-G 2 ), is proposed. In BDL-G 2 , parameters in Gabor layers are sampled from the Gaussian distribution. The proposed BDL-G 2 not only provides the uncertainty estimation, but also strengthens the structure characteristic (i.e., texture) of HSI. Second, to model the uncertainty at the final classification stage, BDL-G 2 is combined with a Bayesian fully-connected layer (i.e., BDL-G 2 -BFL), where the parameters’ distribution is adjusted adaptively. In the proposed BDL-G 2 -BFL, the uncertainty at feature extraction and classification stages are both captured, and a whole uncertainty estimation framework is established. Experimental results on the three public HSI datasets demonstrates the superiority in both accuracy and uncertainty. The proposed Bayesian deep learning-based methods pioneer a new direction and provide useful inspiration and experience for practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助典雅的俊驰采纳,获得10
1秒前
dkm关注了科研通微信公众号
1秒前
1秒前
南柯一梦完成签到 ,获得积分10
2秒前
西蓝花香菜完成签到 ,获得积分10
2秒前
Orange应助段绮彤采纳,获得10
3秒前
3秒前
4秒前
魏少爷发布了新的文献求助10
5秒前
5秒前
5秒前
木木发布了新的文献求助10
6秒前
淘宝叮咚发布了新的文献求助10
6秒前
Jason-1024完成签到,获得积分10
6秒前
优雅的忆霜完成签到,获得积分10
7秒前
淘宝叮咚发布了新的文献求助10
7秒前
10秒前
ywl发布了新的文献求助10
10秒前
11111完成签到,获得积分20
10秒前
roxy发布了新的文献求助10
11秒前
Rondab应助材料小白采纳,获得10
11秒前
小李发布了新的文献求助10
11秒前
李健的小迷弟应助liars采纳,获得10
12秒前
孙成成发布了新的文献求助10
13秒前
13秒前
yunyunyun发布了新的文献求助10
13秒前
ORANGE完成签到,获得积分10
15秒前
老大蒂亚戈完成签到,获得积分10
15秒前
科目三应助无限曲奇采纳,获得10
16秒前
lin发布了新的文献求助10
17秒前
ZhiyunXu2012完成签到 ,获得积分10
17秒前
今后应助tingting9采纳,获得10
17秒前
木木完成签到,获得积分10
18秒前
HYHY完成签到,获得积分10
18秒前
KD_SWMU完成签到,获得积分10
19秒前
19秒前
19秒前
高端完成签到,获得积分10
20秒前
20秒前
ccccccc发布了新的文献求助10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975543
求助须知:如何正确求助?哪些是违规求助? 3519971
关于积分的说明 11200248
捐赠科研通 3256311
什么是DOI,文献DOI怎么找? 1798213
邀请新用户注册赠送积分活动 877446
科研通“疑难数据库(出版商)”最低求助积分说明 806338