Bayesian Deep Learning for Hyperspectral Image Classification With Low Uncertainty

人工智能 计算机科学 贝叶斯概率 机器学习 高光谱成像 深度学习 联营 特征提取 模式识别(心理学)
作者
Xin He,Yushi Chen,Lingbo Huang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:1
标识
DOI:10.1109/tgrs.2023.3257865
摘要

In recent years, deep learning models have been widely used for hyperspectral image (HSI) classification and most of existing deep learning-based methods merely focused on high classification accuracy. However, in real applications, classification with low uncertainty matters as much as accurate classification. Unfortunately, existing methods fail to consider uncertainty. To tackle this challenge, for the first time, Bayesian deep learning (BDL) is investigated to analyze the model uncertainty for HSI classification. Specifically, first, at the feature extraction stage, an HSI classification framework based on BDL, which contains two Bayesian Gabor layers and a global pooling layer (i.e., BDL-G 2 ), is proposed. In BDL-G 2 , parameters in Gabor layers are sampled from the Gaussian distribution. The proposed BDL-G 2 not only provides the uncertainty estimation, but also strengthens the structure characteristic (i.e., texture) of HSI. Second, to model the uncertainty at the final classification stage, BDL-G 2 is combined with a Bayesian fully-connected layer (i.e., BDL-G 2 -BFL), where the parameters’ distribution is adjusted adaptively. In the proposed BDL-G 2 -BFL, the uncertainty at feature extraction and classification stages are both captured, and a whole uncertainty estimation framework is established. Experimental results on the three public HSI datasets demonstrates the superiority in both accuracy and uncertainty. The proposed Bayesian deep learning-based methods pioneer a new direction and provide useful inspiration and experience for practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助小张采纳,获得10
刚刚
爆米花应助gaos采纳,获得10
1秒前
虚安发布了新的文献求助10
2秒前
1234567890发布了新的文献求助10
2秒前
阔达萧发布了新的文献求助10
2秒前
2秒前
RRRIGO完成签到,获得积分10
3秒前
3秒前
嘻嘻完成签到,获得积分10
3秒前
皓月千里发布了新的文献求助10
5秒前
5秒前
合适怜南完成签到,获得积分10
5秒前
李健应助缥缈的迎夏采纳,获得10
5秒前
adfadf完成签到,获得积分20
6秒前
烟花应助SQ采纳,获得10
6秒前
7秒前
阔达萧完成签到,获得积分20
7秒前
恋上鱼的猫完成签到,获得积分10
7秒前
7秒前
aprise完成签到 ,获得积分10
8秒前
爆米花应助舒适的紫丝采纳,获得10
8秒前
科研萌新完成签到,获得积分10
8秒前
8秒前
一夜很静应助细腻白柏采纳,获得10
9秒前
10秒前
搜集达人应助www采纳,获得10
10秒前
Yangpc完成签到,获得积分10
10秒前
guozi完成签到,获得积分10
10秒前
CipherSage应助he采纳,获得10
10秒前
王正浩发布了新的文献求助10
11秒前
11秒前
领导范儿应助8个老登采纳,获得10
11秒前
12秒前
Silieze完成签到,获得积分10
12秒前
12秒前
称心铭发布了新的文献求助30
13秒前
杨自强发布了新的文献求助10
14秒前
东海虞明完成签到,获得积分10
15秒前
evak完成签到 ,获得积分10
15秒前
平常的不平给平常的不平的求助进行了留言
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678