102 AI-Based Molecular Classification of Diffuse Gliomas using Rapid, Label-Free Optical Imaging

医学 ATRX公司 胶质瘤 人工智能 医学物理学 深度学习 放射科 病理 计算机科学 突变 癌症研究 生物 基因 生物化学
作者
Todd Charles Hollon,John G. Golfinos,Daniel A. Orringer,Mitchel S. Berger,Shawn L. Hervey-Jumper,Karin M. Muraszko,Christian W. Freudiger,Jason Heth,Oren Sagher,Jiang Cheng,Asadur Chowdury,Mustafa Nasir Moin,Akhil Kondepudi,Alexander Arash Aabedi,Arjun Adapa,Wajd N. Al-Holou,Lisa I. Wadiura,Georg Widhalm,Volker Neuschmelting,David Reinecke,Sandra Camelo‐Piragua
出处
期刊:Neurosurgery [Oxford University Press]
卷期号:69 (Supplement_1): 22-23
标识
DOI:10.1227/neu.0000000000002375_102
摘要

Molecular classification has transformed the management of brain tumors by enabling more accurate prognostication and personalized treatment. Access to timely molecular diagnostic testing for brain tumor patients is limited, complicating surgical and adjuvant treatment and obstructing clinical trial enrollment.By combining stimulated Raman histology (SRH), a rapid, label-free, non-consumptive, optical imaging method, and deep learning-based image classification, we are able to predict the molecular genetic features used by the World Health Organization (WHO) to define the adult-type diffuse glioma taxonomy, including IDH-1/2, 1p19q-codeletion, and ATRX loss. We developed a multimodal deep neural network training strategy that uses both SRH images and large-scale, public diffuse glioma genomic data (i.e. TCGA, CGGA, etc.) in order to achieve optimal molecular classification performance.One institution was used for model training (University of Michigan) and four institutions (NYU, UCSF, Medical University of Vienna, and University Hospital Cologne) were included for patient enrollment in the prospective testing cohort. Using our system, called DeepGlioma, we achieved an average molecular genetic classification accuracy of 93.2% and identified the correct diffuse glioma molecular subgroup with 91.5% accuracy within 2 minutes in the operating room. DeepGlioma outperformed conventional IDH1-R132H immunohistochemistry (94.2% versus 91.4% accuracy) as a first-line molecular diagnostic screening method for diffuse gliomas and can detect canonical and non-canonical IDH mutations.Our results demonstrate how artificial intelligence and optical histology can be used to provide a rapid and scalable alternative to wet lab methods for the molecular diagnosis of brain tumor patients during surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wyn完成签到,获得积分10
2秒前
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
licheng完成签到,获得积分10
3秒前
浅尝离白应助科研通管家采纳,获得20
3秒前
酷波er应助科研通管家采纳,获得200
3秒前
打打应助科研通管家采纳,获得50
3秒前
跳跃仙人掌应助加菲丰丰采纳,获得30
4秒前
慕青应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
青辞198完成签到 ,获得积分10
4秒前
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得30
4秒前
慕青应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
Hello应助19采纳,获得200
5秒前
5秒前
sunshine应助zcz采纳,获得10
5秒前
丁小丁发布了新的文献求助10
6秒前
123456完成签到,获得积分10
6秒前
7秒前
Nick发布了新的文献求助10
8秒前
浮尘完成签到,获得积分10
8秒前
8秒前
犹豫的亦云完成签到,获得积分10
8秒前
安笙凉城完成签到 ,获得积分10
9秒前
谷粱紫槐完成签到,获得积分10
9秒前
MorningStar发布了新的文献求助10
9秒前
田田发布了新的文献求助10
9秒前
Takitorin发布了新的文献求助10
9秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312954
求助须知:如何正确求助?哪些是违规求助? 2945312
关于积分的说明 8524570
捐赠科研通 2621088
什么是DOI,文献DOI怎么找? 1433321
科研通“疑难数据库(出版商)”最低求助积分说明 664936
邀请新用户注册赠送积分活动 650325