A study on the stratification of long-tail customers in civil aviation based on a cluster ensemble

聚类分析 轮廓 计算机科学 堆积 数据挖掘 民用航空 兰德指数 贝叶斯概率 集合预报 混合模型 算法 人工智能 航空 工程类 物理 核磁共振 航空航天工程
作者
Yi Zong,Ying Li,Enze Pan,Simin Chen,Jingkuan Zhang,Binbin Gao
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:46 (3): 5783-5799
标识
DOI:10.3233/jifs-234155
摘要

Stratifying long-tail customers and identifying high-quality customers with high growth potential are crucial for civil aviation companies to explore new profit growth points. This paper proposes a long-tail customer stratification model based on clustering ensemble to address the problems of insufficient attention to long-tail customers in previous studies and the low accuracy and lack of accuracy testing of single clustering algorithms. First, the Bayesian information criterion is used to determine the optimal number of clusters. Then, an ensemble framework integrating the Gaussian mixture model, spectral clustering, Two step clustering and K-means algorithm is constructed, and the stacking and bagging ensemble methods are used for the cluster ensemble. Finally, three different indicators are used to evaluate the algorithm performance. Experimental results indicate that compared with single clustering algorithms, the Stacking algorithm increases the silhouette coefficient by 14.77% to 27.11%, the Calinski-Harabasz index by 38.83% to 122.18%, and the Davies-Bouldin Index by 19.38% to 98.04%. This indicates that each clustering has high cohesion and separation, with samples within a category being more closely related and those between categories having clear boundaries. It shows that the Stacking algorithm more accurately stratifies long-tail customers with similar consumption behaviors into different categories, achieving customer stratification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
汉堡包应助吃面条放辣椒采纳,获得10
1秒前
贪玩菲音发布了新的文献求助10
1秒前
yue发布了新的文献求助10
2秒前
Phosphene应助炙热的安柏采纳,获得10
2秒前
科研通AI2S应助向阳采纳,获得10
2秒前
2秒前
霍凡白发布了新的文献求助10
2秒前
lzcnextdoor发布了新的文献求助10
2秒前
3秒前
甜蜜雅彤发布了新的文献求助10
3秒前
完美世界应助xtutang采纳,获得10
3秒前
开心果完成签到,获得积分10
4秒前
4秒前
4秒前
xxxd发布了新的文献求助10
4秒前
科目三应助crazy采纳,获得10
5秒前
搜集达人应助Growth采纳,获得10
6秒前
抹茶泡泡关注了科研通微信公众号
6秒前
7秒前
EVEN完成签到,获得积分10
7秒前
orixero应助风清月明已深秋采纳,获得10
8秒前
黑包包大人完成签到,获得积分10
9秒前
感动雨雪发布了新的文献求助10
9秒前
10秒前
10秒前
wb完成签到 ,获得积分10
11秒前
ured完成签到,获得积分20
11秒前
11秒前
11秒前
吃面条放辣椒完成签到,获得积分10
12秒前
13秒前
领导范儿应助球球爱灰灰采纳,获得10
14秒前
paparazzi221应助谢小盟采纳,获得100
14秒前
14秒前
15秒前
bible完成签到,获得积分10
15秒前
yue完成签到,获得积分10
15秒前
persevere完成签到,获得积分10
15秒前
简单德地发布了新的文献求助10
16秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3074443
求助须知:如何正确求助?哪些是违规求助? 2727939
关于积分的说明 7501419
捐赠科研通 2376049
什么是DOI,文献DOI怎么找? 1259754
科研通“疑难数据库(出版商)”最低求助积分说明 610754
版权声明 597081