认知功能衰退
内科学
阿尔茨海默病神经影像学倡议
心理学
血管内皮生长因子A
肿瘤科
阿尔茨海默病
医学
内分泌学
疾病
血管内皮生长因子
痴呆
血管内皮生长因子受体
作者
Hyun‐Sik Yang,Wai‐Ying Wendy Yau,Becky C. Carlyle,Bianca A. Trombetta,Can Zhang,Zahra Shirzadi,Aaron P. Schultz,Jeremy J. Pruzin,Colleen Fitzpatrick,Dylan Kirn,Jennifer S. Rabin,Rachel F. Buckley,Timothy J. Hohman,Dorene M. Rentz,Rudolph E. Tanzi,Keith A. Johnson,Reisa A. Sperling,Steven E. Arnold,Jasmeer P. Chhatwal
出处
期刊:Brain
[Oxford University Press]
日期:2024-02-04
被引量:3
标识
DOI:10.1093/brain/awae034
摘要
Abstract Vascular dysfunction is increasingly recognized as an important contributor to the pathogenesis of Alzheimer’s disease. Alterations in vascular endothelial growth factor (VEGF) pathways have been implicated as potential mechanisms. However, the specific impact of VEGF proteins in preclinical Alzheimer’s disease and their relationships with other Alzheimer’s disease and vascular pathologies during this critical early period remain to be elucidated. We included 317 older adults from the Harvard Aging Brain Study, a cohort of individuals who were cognitively unimpaired at baseline and followed longitudinally for up to 12 years. Baseline VEGF family protein levels (VEGFA, VEGFC, VEGFD, PGF, and FLT1) were measured in fasting plasma using high-sensitivity immunoassays. Using linear mixed effects models, we examined the interactive effects of baseline plasma VEGF proteins and amyloid PET burden (Pittsburgh Compound-B) on longitudinal cognition (Preclinical Alzheimer Cognitive Composite-5). We further investigated if effects on cognition were mediated by early neocortical tau accumulation (Flortaucipir PET burden in the inferior temporal cortex) or hippocampal atrophy. Lastly, we examined the impact of adjusting for baseline cardiovascular risk score or white matter hyperintensity volume. Baseline plasma VEGFA and PGF each showed a significant interaction with amyloid burden on prospective cognitive decline. Specifically, low VEGFA and high PGF were associated with greater cognitive decline in individuals with elevated amyloid, i.e. those on the Alzheimer’s disease continuum. Concordantly, low VEGFA and high PGF were associated with accelerated longitudinal tau accumulation in those with elevated amyloid. Moderated mediation analyses confirmed that accelerated tau accumulation fully mediated the effects of low VEGFA and partially mediated (31%) the effects of high PGF on faster amyloid-related cognitive decline. The effects of VEGFA and PGF on tau and cognition remained significant after adjusting for cardiovascular risk score or white matter hyperintensity volume. There were concordant but non-significant associations with longitudinal hippocampal atrophy. Together, our findings implicate low VEGFA and high PGF in accelerating early neocortical tau pathology and cognitive decline in preclinical Alzheimer’s disease. Additionally, our results underscore the potential of these minimally-invasive plasma biomarkers to inform the risk of Alzheimer’s disease progression in the preclinical population. Importantly, VEGFA and PGF appear to capture distinct effects from vascular risks and cerebrovascular injury. This highlights their potential as new therapeutic targets, in combination with anti-amyloid and traditional vascular risk reduction therapies, to slow the trajectory of preclinical Alzheimer’s disease and delay or prevent the onset of cognitive decline.
科研通智能强力驱动
Strongly Powered by AbleSci AI