Variational mode decomposition-based multirate data-fusion framework for estimating structural dynamic displacement by integrating vision- and acceleration-based measurements

加速度 动态模态分解 流离失所(心理学) 模式(计算机接口) 分解 融合 传感器融合 计算机科学 控制理论(社会学) 物理 人工智能 经典力学 机器学习 操作系统 控制(管理) 心理治疗师 哲学 心理学 生物 语言学 生态学
作者
Zhenfen Jin,Guyuan Chen,Yanbo Niu,Congguang Zhang,Xiaowu Zhang,Jiangpeng Shu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:211: 111252-111252 被引量:7
标识
DOI:10.1016/j.ymssp.2024.111252
摘要

Dynamic displacement is a crucial parameter in structural health monitoring (SHM) for assessing the safety, dependability, and suitability of structures under various types of excitations. Computer vision-based methods for dynamic displacement estimation have attracted much interest owing to their cost-effectiveness and convenience. However, these methods are limited by their low sampling rates and high data sensitivity. To compensate for these limitations, methods for combining data obtained from other sensors have been proposed. In this study, an experimental data-fusion framework for displacement estimation based on variational mode decomposition (VMD) was developed to leverage the advantages of vision- and acceleration-based measurements. The measurements were decomposed into ensembles of modes and recomposed to reconstruct the displacement with a higher accuracy and over a wider frequency range. An optimal mode recomposition method was proposed to achieve optimal mode combinations. Furthermore, this study introduced an improved vision-based displacement measurement method and a VMD-based indirect acceleration measurement method. The proposed framework was validated through four-story RC structure tests, which demonstrated that the method could enhance the accuracy of displacement estimation and extend the feasible frequency range compared with single-source displacement measurements. The method provides a promising solution for more effective health monitoring of modern structures subjected to a wide variety of dynamic loads.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jason发布了新的文献求助10
1秒前
zz完成签到,获得积分20
1秒前
汉堡包应助fffF采纳,获得10
2秒前
爆米花应助HOLLYWOO采纳,获得10
3秒前
Wsh发布了新的文献求助10
3秒前
有梦不觉人生寒完成签到 ,获得积分10
3秒前
洁洁酱发布了新的文献求助10
3秒前
航神发布了新的文献求助10
4秒前
樊哲伟发布了新的文献求助10
6秒前
6秒前
7秒前
可爱的函函应助苗小天采纳,获得10
8秒前
JamesPei应助无辜问玉采纳,获得10
8秒前
谦让的语儿完成签到,获得积分10
9秒前
浮世之笙完成签到,获得积分10
10秒前
zx完成签到,获得积分10
11秒前
樊哲伟完成签到,获得积分20
12秒前
朴实归尘发布了新的文献求助10
13秒前
官官发布了新的文献求助10
13秒前
13秒前
董羽佳完成签到,获得积分10
13秒前
Ya发布了新的文献求助10
14秒前
科研通AI6应助无言务实采纳,获得10
14秒前
沉默诗柳完成签到,获得积分10
14秒前
16秒前
yyds完成签到,获得积分0
18秒前
18秒前
诚诚不差事完成签到,获得积分10
19秒前
丘比特应助直率翠绿采纳,获得10
20秒前
完美世界应助官官采纳,获得10
20秒前
22秒前
23秒前
24秒前
科研通AI2S应助番茄大王采纳,获得10
25秒前
26秒前
小青椒应助眯眯眼的代容采纳,获得30
27秒前
初夏发布了新的文献求助10
28秒前
29秒前
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288121
求助须知:如何正确求助?哪些是违规求助? 4440061
关于积分的说明 13823852
捐赠科研通 4322320
什么是DOI,文献DOI怎么找? 2372504
邀请新用户注册赠送积分活动 1367975
关于科研通互助平台的介绍 1331592