Variational mode decomposition-based multirate data-fusion framework for estimating structural dynamic displacement by integrating vision- and acceleration-based measurements

加速度 动态模态分解 流离失所(心理学) 模式(计算机接口) 分解 融合 传感器融合 计算机科学 控制理论(社会学) 物理 人工智能 经典力学 机器学习 操作系统 控制(管理) 心理治疗师 哲学 心理学 生物 语言学 生态学
作者
Zhenfen Jin,Guyuan Chen,Yanbo Niu,Congguang Zhang,Xiaowu Zhang,Jiangpeng Shu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:211: 111252-111252 被引量:7
标识
DOI:10.1016/j.ymssp.2024.111252
摘要

Dynamic displacement is a crucial parameter in structural health monitoring (SHM) for assessing the safety, dependability, and suitability of structures under various types of excitations. Computer vision-based methods for dynamic displacement estimation have attracted much interest owing to their cost-effectiveness and convenience. However, these methods are limited by their low sampling rates and high data sensitivity. To compensate for these limitations, methods for combining data obtained from other sensors have been proposed. In this study, an experimental data-fusion framework for displacement estimation based on variational mode decomposition (VMD) was developed to leverage the advantages of vision- and acceleration-based measurements. The measurements were decomposed into ensembles of modes and recomposed to reconstruct the displacement with a higher accuracy and over a wider frequency range. An optimal mode recomposition method was proposed to achieve optimal mode combinations. Furthermore, this study introduced an improved vision-based displacement measurement method and a VMD-based indirect acceleration measurement method. The proposed framework was validated through four-story RC structure tests, which demonstrated that the method could enhance the accuracy of displacement estimation and extend the feasible frequency range compared with single-source displacement measurements. The method provides a promising solution for more effective health monitoring of modern structures subjected to a wide variety of dynamic loads.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
英吉利25发布了新的文献求助10
1秒前
2秒前
科研通AI6应助李_Steven采纳,获得10
3秒前
科研通AI6应助李_Steven采纳,获得10
3秒前
科研通AI6应助李_Steven采纳,获得10
3秒前
科研通AI6应助李_Steven采纳,获得10
3秒前
科研通AI6应助李_Steven采纳,获得10
3秒前
科研通AI6应助李_Steven采纳,获得10
3秒前
饭团的老父亲应助李_Steven采纳,获得10
3秒前
饭团的老父亲应助李_Steven采纳,获得10
3秒前
饭团的老父亲应助李_Steven采纳,获得10
3秒前
Shawn完成签到,获得积分10
3秒前
饭团的老父亲应助李_Steven采纳,获得10
3秒前
3秒前
大模型应助周美言采纳,获得10
4秒前
王超发布了新的文献求助10
4秒前
5秒前
agony完成签到 ,获得积分10
5秒前
天天破大防完成签到,获得积分10
5秒前
宫宛儿发布了新的文献求助10
6秒前
0514gr完成签到,获得积分10
6秒前
斯文败类应助圥忈采纳,获得10
6秒前
完美世界应助龙凌音采纳,获得10
8秒前
chc发布了新的文献求助10
8秒前
8秒前
李爱国应助BioGO采纳,获得10
9秒前
含蓄的小熊猫完成签到 ,获得积分10
9秒前
科研通AI6应助李_Steven采纳,获得10
10秒前
科研通AI6应助李_Steven采纳,获得10
10秒前
科研通AI6应助李_Steven采纳,获得30
10秒前
GAPING发布了新的文献求助10
10秒前
科研通AI6应助李_Steven采纳,获得10
10秒前
科研通AI6应助李_Steven采纳,获得10
10秒前
科研通AI6应助李_Steven采纳,获得10
10秒前
科研通AI6应助李_Steven采纳,获得10
10秒前
科研通AI6应助李_Steven采纳,获得10
10秒前
科研通AI6应助李_Steven采纳,获得10
10秒前
10秒前
酷波er应助激昂的蜻蜓采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5655717
求助须知:如何正确求助?哪些是违规求助? 4800177
关于积分的说明 15073698
捐赠科研通 4814168
什么是DOI,文献DOI怎么找? 2575555
邀请新用户注册赠送积分活动 1530927
关于科研通互助平台的介绍 1489596