Fine-tuning activation specificity of G-protein-coupled receptors via automated path searching

受体 G蛋白偶联受体 化学 S1PR1型 生物发光 锚蛋白重复序列 生物系统 生物物理学 生物 生物化学 基因 血管内皮生长因子A 血管内皮生长因子受体 癌症研究 血管内皮生长因子
作者
Rujuan Ti,Bin Pang,Leiye Yu,Bing Siang Gan,Wenzhuo Ma,Arieh Warshel,Ruobing Ren,Lizhe Zhu
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:121 (8) 被引量:1
标识
DOI:10.1073/pnas.2317893121
摘要

Physics-based simulation methods can grant atomistic insights into the molecular origin of the function of biomolecules. However, the potential of such approaches has been hindered by their low efficiency, including in the design of selective agonists where simulations of myriad protein-ligand combinations are necessary. Here, we describe an automated input-free path searching protocol that offers (within 14 d using Graphics Processing Unit servers) a minimum free energy path (MFEP) defined in high-dimension configurational space for activating sphingosine-1-phosphate receptors (S1PRs) by arbitrary ligands. The free energy distributions along the MFEP for four distinct ligands and three S1PRs reached a remarkable agreement with Bioluminescence Resonance Energy Transfer (BRET) measurements of G-protein dissociation. In particular, the revealed transition state structures pointed out toward two S1PR3 residues F263/I284, that dictate the preference of existing agonists CBP307 and BAF312 on S1PR1/5. Swapping these residues between S1PR1 and S1PR3 reversed their response to the two agonists in BRET assays. These results inspired us to design improved agonists with both strong polar head and bulky hydrophobic tail for higher selectivity on S1PR1. Through merely three in silico iterations, our tool predicted a unique compound scaffold. BRET assays confirmed that both chiral forms activate S1PR1 at nanomolar concentration, 1 to 2 orders of magnitude less than those for S1PR3/5. Collectively, these results signify the promise of our approach in fine agonist design for G-protein-coupled receptors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tang完成签到,获得积分10
刚刚
海棠花未眠完成签到,获得积分10
刚刚
djh233发布了新的文献求助20
2秒前
曲又蓝完成签到,获得积分10
2秒前
白开水完成签到,获得积分20
3秒前
3秒前
蚂蚁Y嘿完成签到,获得积分10
4秒前
4秒前
rose完成签到,获得积分10
4秒前
ding应助Xx采纳,获得10
4秒前
4秒前
丂枧完成签到 ,获得积分10
5秒前
今后应助gao采纳,获得10
5秒前
5秒前
赘婿应助zSmart采纳,获得10
6秒前
云魂完成签到,获得积分10
6秒前
6秒前
orixero应助郭翔采纳,获得10
7秒前
余小琴完成签到 ,获得积分10
7秒前
慕青应助无奈的黑猫采纳,获得10
7秒前
Youngyoung完成签到,获得积分10
7秒前
bkagyin应助yqy1234采纳,获得10
7秒前
东东完成签到,获得积分10
8秒前
8秒前
charles发布了新的文献求助10
9秒前
cyfmlt发布了新的文献求助10
9秒前
10秒前
嘿哈发布了新的文献求助10
10秒前
yuki完成签到,获得积分10
10秒前
无限的可乐应助小红采纳,获得10
10秒前
希望天下0贩的0应助hu采纳,获得10
10秒前
凉凉应助养乐多采纳,获得10
10秒前
10秒前
elle发布了新的文献求助10
11秒前
满意黑夜完成签到,获得积分10
14秒前
14秒前
CL完成签到,获得积分10
14秒前
14秒前
英俊的铭应助李奥采纳,获得10
15秒前
ding应助elle采纳,获得10
15秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010081
求助须知:如何正确求助?哪些是违规求助? 3550086
关于积分的说明 11304770
捐赠科研通 3284597
什么是DOI,文献DOI怎么找? 1810722
邀请新用户注册赠送积分活动 886535
科研通“疑难数据库(出版商)”最低求助积分说明 811451