MRI-based radiomics model to preoperatively predict mesenchymal transition subtype in high-grade serous ovarian cancer

浆液性卵巢癌 医学 卵巢癌 磁共振成像 无线电技术 浆液性液体 病理 放射科 肿瘤科 内科学 癌症
作者
Zhenyang Lin,Hong Ge,Qinhao Guo,Jialiang Ren,W. Y. Gu,Jin Lü,Yufeng Zhong,Jinwei Qiang,Jing Gong,H. Li
出处
期刊:Clinical Radiology [Elsevier]
卷期号:79 (5): e715-e724
标识
DOI:10.1016/j.crad.2024.01.018
摘要

AIM To develop a magnetic resonance imaging (MRI)-based radiomics model for the preoperative identification of mesenchymal transition (MT) subtype in high-grade serous ovarian cancer (HGSOC). MATERIALS AND METHODS One hundred and eighty-nine patients with histopathologically confirmed HGSOC were enrolled retrospectively. Among the included patients, 55 patients were determined as the MT subtype and the remaining 134 were non-MT subtype. After extracting a total of 204 features from T2-weighted imaging (WI) and contrast-enhanced (CE)-T1WI images, the Mann–Whitney U-test, Spearman correlation test, and Boruta algorithm were adopted to select the optimal feature set. Three classifiers, including logistic regression (LR), support vector machine (SVM), and random forest (RF), were trained to develop radiomics models. The performance of established models was evaluated from three aspects: discrimination, calibration, and clinical utility. RESULTS Seven radiomics features relevant to MT subtypes were selected to build the radiomics models. The model based on the RF algorithm showed the best performance in predicting MT subtype, with areas under the curves (AUCs) of 0.866 (95% confidence interval [CI]: 0.797–0.936) and 0.852 (95% CI: 0.736–0.967) in the training and testing cohorts, respectively. The calibration curves, supported with Brier scores, indicated very good consistency between observation and prediction. Decision curve analysis (DCA) showed that the RF-based model could provide more net benefit, which suggested favorable utility in clinical application. CONCLUSION The RF-based radiomics model provided accurate identification of MT from the non-MT subtype and may help facilitate personalised management of HGSOC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9209完成签到,获得积分10
刚刚
刚刚
1秒前
七七发布了新的文献求助10
2秒前
威武好吐司完成签到 ,获得积分10
2秒前
哈哈完成签到,获得积分10
2秒前
3秒前
3秒前
QYX完成签到,获得积分10
3秒前
DireWolf完成签到 ,获得积分10
3秒前
liziqi发布了新的文献求助10
4秒前
4秒前
5秒前
小芋圆儿发布了新的文献求助10
5秒前
潇洒夏山发布了新的文献求助30
6秒前
马达完成签到 ,获得积分10
8秒前
8秒前
8秒前
一一发布了新的文献求助10
8秒前
科研通AI5应助双珠采纳,获得10
9秒前
9秒前
Lumos发布了新的文献求助10
9秒前
9秒前
自由凝蕊发布了新的文献求助10
10秒前
万能图书馆应助於茗采纳,获得10
12秒前
12秒前
12秒前
13秒前
13秒前
xw发布了新的文献求助30
14秒前
科研通AI5应助一一采纳,获得10
14秒前
星辰大海应助诚心的冰旋采纳,获得10
15秒前
淑儿哥哥发布了新的文献求助10
15秒前
fiona发布了新的文献求助10
15秒前
科研通AI5应助phz采纳,获得10
16秒前
Lumos完成签到,获得积分10
17秒前
祁郁郁发布了新的文献求助10
17秒前
18秒前
惊蛰发布了新的文献求助30
18秒前
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543968
求助须知:如何正确求助?哪些是违规求助? 3121180
关于积分的说明 9345951
捐赠科研通 2819266
什么是DOI,文献DOI怎么找? 1550071
邀请新用户注册赠送积分活动 722375
科研通“疑难数据库(出版商)”最低求助积分说明 713169