Deep Learning Enabled SERS Identification of Gaseous Molecules on Flexible Plasmonic MOF Nanowire Films

等离子体子 纳米线 纳米技术 材料科学 表面增强拉曼光谱 分析物 拉曼光谱 分子 拉曼散射 多孔性 光电子学 化学 有机化学 光学 物理 物理化学 复合材料
作者
Minghong Li,Xi He,Chaolin Wu,Li Wang,Xin Zhang,Xiangnan Gong,Xiping Zeng,Yingzhou Huang
出处
期刊:ACS Sensors [American Chemical Society]
卷期号:9 (2): 979-987 被引量:2
标识
DOI:10.1021/acssensors.3c02519
摘要

Through the capture of a target molecule at the metal surface with a highly confined electromagnetic field induced by surface plasmon, surface enhanced Raman spectroscopy (SERS) emerges as a spectral analysis technology with high sensitivity. However, accurate SERS identification of a gaseous molecule with low density and high velocity is still a challenge due to its difficulty in capture. In this work, a flexible paper-based plasmonic metal–organic framework (MOF) film consisting of Ag nanowires@ZIF-8 (AgNWs@ZIF-8) is fabricated for SERS detection of gaseous molecules. Benefiting from its micronanopores generated by the nanowire network and ZIF-8 shell, the effective capture of the gaseous molecule is achieved, and its SERS spectrum is obtained in this paper-based flexible plasmonic MOF nanowire film. With optimal structure parameters, spectra of gaseous 4-aminothiophenol, 4-mercaptophenol, and dithiohydroquinone demonstrate that this film has good SERS performance, which could maintain obvious Raman signals within 30 days during reproducible detection. To realize SERS identification of gaseous molecules, deep learning is performed based on the SERS spectra of the mixed gaseous analyte obtained in this flexible porous film. The results point out that an artificial neural network algorithm could identify gaseous aldehydes (gaseous biomarker of colorectal cancer) in simulated exhaled breath with high accuracy at 93.7%. The integration of the flexible paper-based film sensors with deep learning offers a promising new approach for noninvasive colorectal cancer screening. Our work explores SERS applications in gaseous analyte detection and has broad potential in clinical medicine, food safety, environmental monitoring, etc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
爱学习的11完成签到,获得积分10
4秒前
林夕发布了新的文献求助10
5秒前
6秒前
6秒前
buzhidao完成签到,获得积分10
7秒前
不配.应助研友_Z7XY28采纳,获得20
8秒前
Niuma完成签到,获得积分10
9秒前
小陈老板完成签到,获得积分10
9秒前
10秒前
ZJK完成签到,获得积分20
11秒前
12秒前
12秒前
Sean0382发布了新的文献求助10
12秒前
13秒前
14秒前
dai完成签到,获得积分10
14秒前
逃跑的想表白的你猜完成签到,获得积分20
14秒前
guoling完成签到,获得积分10
16秒前
ZJK发布了新的文献求助10
16秒前
17秒前
18秒前
LL发布了新的文献求助10
18秒前
18秒前
年少欣欣欣完成签到,获得积分10
18秒前
sitera完成签到 ,获得积分20
19秒前
dai发布了新的文献求助10
20秒前
江风海韵完成签到,获得积分10
20秒前
20秒前
21秒前
Guofenglei发布了新的文献求助10
22秒前
mustardseeds发布了新的文献求助10
23秒前
czz014完成签到,获得积分10
23秒前
开朗以亦发布了新的文献求助10
25秒前
25秒前
Akim应助LL采纳,获得10
25秒前
26秒前
cghmfgh发布了新的文献求助10
29秒前
星辰大海应助nilu采纳,获得10
29秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141752
求助须知:如何正确求助?哪些是违规求助? 2792736
关于积分的说明 7804057
捐赠科研通 2449017
什么是DOI,文献DOI怎么找? 1303050
科研通“疑难数据库(出版商)”最低求助积分说明 626718
版权声明 601260