锐钛矿
材料科学
光催化
电子顺磁共振
罗丹明B
光致发光
傅里叶变换红外光谱
光化学
分析化学(期刊)
可见光谱
拉曼光谱
化学
化学工程
核磁共振
光电子学
光学
催化作用
有机化学
物理
工程类
作者
Manikandan Kandasamy,Amreetha Seetharaman,Seetha Lakshmy,A. Nithya,M. Karnan,Manjunath Shetty,S. Kanchana,Jiaqian Qin,Kandasamy Jothivenkatachalam,Brahmananda Chakraborty
标识
DOI:10.1016/j.saa.2024.123846
摘要
N-S codoped TiO2 nanoparticles (NPs) were synthesized using a sol–gel cum hydrothermal approach, with ammonium sulfate as the nitrogen and sulfur source compound. The calcination temperature was varied between 500 and 700 °C. The pristine samples exhibited a mixed phase of anatase and brookite, while the doped samples exhibited only the anatase phase, as confirmed by X-ray diffraction (XRD) analysis. Fourier-transform infrared spectroscopy (FTIR) confirmed the presence of N-H vibrations and S-O bidentate complexation with Ti4+ ions. Electron paramagnetic resonance (EPR) revealed the presence of Ti3+ signals, confirming the creation of oxygen defects in the doped samples. The absorption and emission properties of the samples were investigated using ultraviolet–visible (UV–Vis) and photoluminescence (PL) spectroscopy. Vibrating sample magnetometry (VSM) analysis confirms the room-temperature ferromagnetic behavior of the N-S doped sample, which was attributed to the presence of oxygen vacancies, as evidenced by the EPR and PL results. The N-S doped samples demonstrated superior photocatalytic degradation of Rhodamine B (RhB), Methylene Blue (MB), and Congo Red (CR) dyes under visible light illumination compared to the pristine TiO2. This enhanced performance was attributed to the presence of N and S dopants in TiO2, which create new energy levels within the band structure of TiO2, allowing for efficient absorption of visible light and subsequent generation of reactive species for dye degradation. N-S doping modifies the electronic structure of TiO2, enhancing two-photon absorption (TPA). This increased TPA efficiency suggests promising applications in optical devices, such as laser protection systems and optical limiters. DFT investigation also confirms that the presence of oxygen vacancies generates energy states below the conduction band. This, in turn, benefits the absorption of more visible light during photocatalytic activities and leads to a notable nonlinear absorption in optical limiting. Overall, the N-S doping strategy significantly improves the photocatalytic and optical limiting performance of TiO2 NPs, making them promising candidates for a wide range of applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI