An integrated model incorporating deep learning, hand-crafted radiomics and clinical and US features to diagnose central lymph node metastasis in patients with papillary thyroid cancer

医学 淋巴结 外科肿瘤学 放射科 无线电技术 解剖(医学) 转移 甲状腺癌 甲状腺 癌症 内科学
作者
Yang Gao,Weizhen Wang,Yuan Yang,Ziting Xu,Yue Lin,Ting Lang,Shangtong Lei,Yisheng Xiao,Wei Yang,Weijun Huang,Yingjia Li
出处
期刊:BMC Cancer [Springer Nature]
卷期号:24 (1) 被引量:2
标识
DOI:10.1186/s12885-024-11838-1
摘要

Abstract Objective To evaluate the value of an integrated model incorporating deep learning (DL), hand-crafted radiomics and clinical and US imaging features for diagnosing central lymph node metastasis (CLNM) in patients with papillary thyroid cancer (PTC). Methods This retrospective study reviewed 613 patients with clinicopathologically confirmed PTC from two institutions. The DL model and hand-crafted radiomics model were developed using primary lesion images and then integrated with clinical and US features selected by multivariate analysis to generate an integrated model. The performance was compared with junior and senior radiologists on the independent test set. SHapley Additive exPlanations (SHAP) plot and Gradient-weighted Class Activation Mapping (Grad-CAM) were used for the visualized explanation of the model. Results The integrated model yielded the best performance with an AUC of 0.841. surpassing that of the hand-crafted radiomics model (0.706, p < 0.001) and the DL model (0.819, p = 0.26). Compared to junior and senior radiologists, the integrated model reduced the missed CLNM rate from 57.89% and 44.74–27.63%, and decreased the rate of unnecessary central lymph node dissection (CLND) from 29.87% and 27.27–18.18%, respectively. SHAP analysis revealed that the DL features played a primary role in the diagnosis of CLNM, while clinical and US features (such as extrathyroidal extension, tumour size, age, gender, and multifocality) provided additional support. Grad-CAM indicated that the model exhibited a stronger focus on thyroid capsule in patients with CLNM. Conclusion Integrated model can effectively decrease the incidence of missed CLNM and unnecessary CLND. The application of the integrated model can help improve the acceptance of AI-assisted US diagnosis among radiologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Micky发布了新的文献求助10
1秒前
ruxing完成签到,获得积分10
1秒前
影像大侠完成签到,获得积分10
1秒前
852应助HYG采纳,获得30
2秒前
麦麦完成签到,获得积分10
2秒前
田様应助Isabel采纳,获得10
2秒前
gezid完成签到 ,获得积分10
2秒前
3秒前
3秒前
niu1发布了新的文献求助10
3秒前
Intro发布了新的文献求助10
3秒前
舒服的冬天完成签到,获得积分10
4秒前
Helical给Helical的求助进行了留言
4秒前
甜蜜晓绿完成签到,获得积分10
4秒前
5秒前
钱多多完成签到,获得积分10
5秒前
baekhyun完成签到,获得积分20
5秒前
5秒前
dpp发布了新的文献求助10
5秒前
今今完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
7秒前
打打应助无情的白桃采纳,获得10
7秒前
香蕉觅云应助与光同晨采纳,获得10
8秒前
8秒前
小蘑菇应助clm采纳,获得10
8秒前
yhnsag完成签到,获得积分10
8秒前
Lin完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
10秒前
Rain发布了新的文献求助10
10秒前
butiflow完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762