An integrated model incorporating deep learning, hand-crafted radiomics and clinical and US features to diagnose central lymph node metastasis in patients with papillary thyroid cancer

医学 淋巴结 外科肿瘤学 放射科 无线电技术 解剖(医学) 转移 甲状腺癌 甲状腺 癌症 内科学
作者
Yang Gao,Weizhen Wang,Yuan Yang,Ziting Xu,Yue Lin,Ting Lang,Shangtong Lei,Yisheng Xiao,Wei Yang,Weijun Huang,Yingjia Li
出处
期刊:BMC Cancer [Springer Nature]
卷期号:24 (1) 被引量:2
标识
DOI:10.1186/s12885-024-11838-1
摘要

Abstract Objective To evaluate the value of an integrated model incorporating deep learning (DL), hand-crafted radiomics and clinical and US imaging features for diagnosing central lymph node metastasis (CLNM) in patients with papillary thyroid cancer (PTC). Methods This retrospective study reviewed 613 patients with clinicopathologically confirmed PTC from two institutions. The DL model and hand-crafted radiomics model were developed using primary lesion images and then integrated with clinical and US features selected by multivariate analysis to generate an integrated model. The performance was compared with junior and senior radiologists on the independent test set. SHapley Additive exPlanations (SHAP) plot and Gradient-weighted Class Activation Mapping (Grad-CAM) were used for the visualized explanation of the model. Results The integrated model yielded the best performance with an AUC of 0.841. surpassing that of the hand-crafted radiomics model (0.706, p < 0.001) and the DL model (0.819, p = 0.26). Compared to junior and senior radiologists, the integrated model reduced the missed CLNM rate from 57.89% and 44.74–27.63%, and decreased the rate of unnecessary central lymph node dissection (CLND) from 29.87% and 27.27–18.18%, respectively. SHAP analysis revealed that the DL features played a primary role in the diagnosis of CLNM, while clinical and US features (such as extrathyroidal extension, tumour size, age, gender, and multifocality) provided additional support. Grad-CAM indicated that the model exhibited a stronger focus on thyroid capsule in patients with CLNM. Conclusion Integrated model can effectively decrease the incidence of missed CLNM and unnecessary CLND. The application of the integrated model can help improve the acceptance of AI-assisted US diagnosis among radiologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
舒适斑马发布了新的文献求助10
1秒前
1秒前
辛勤的采萱关注了科研通微信公众号
4秒前
wl5289完成签到 ,获得积分10
4秒前
tfq200完成签到,获得积分10
4秒前
lilililili发布了新的文献求助10
5秒前
5秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
8秒前
英姑应助光亮秋白采纳,获得10
8秒前
互助遵法尚德应助干羞花采纳,获得10
9秒前
贾贾闇完成签到,获得积分10
9秒前
10秒前
夕夜完成签到,获得积分10
10秒前
choi发布了新的文献求助10
11秒前
丘比特应助舒适斑马采纳,获得10
12秒前
13秒前
叶子发布了新的文献求助10
14秒前
max2022发布了新的文献求助10
18秒前
小榔头关注了科研通微信公众号
20秒前
nidhhog发布了新的文献求助10
21秒前
开庆完成签到,获得积分10
21秒前
传奇3应助666采纳,获得10
22秒前
叶子完成签到,获得积分10
22秒前
舒适斑马完成签到,获得积分10
22秒前
23秒前
Chenzhs完成签到,获得积分10
23秒前
23秒前
东十八完成签到 ,获得积分10
25秒前
25秒前
雷锋发布了新的文献求助10
26秒前
十万八千完成签到,获得积分10
27秒前
lenny发布了新的文献求助10
30秒前
曾经的依风完成签到,获得积分10
31秒前
黑宝坨完成签到,获得积分10
33秒前
39秒前
呼呼啦啦完成签到,获得积分10
41秒前
牧云完成签到 ,获得积分10
42秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151919
求助须知:如何正确求助?哪些是违规求助? 2803228
关于积分的说明 7852576
捐赠科研通 2460608
什么是DOI,文献DOI怎么找? 1309955
科研通“疑难数据库(出版商)”最低求助积分说明 629070
版权声明 601760