光电流
纳米棒
响应度
材料科学
光电子学
异质结
光电探测器
紫外线
图像传感器
光学
纳米技术
物理
作者
Xuan Wang,Ke Ding,Lijuan Huang,Xudong Li,Liyu Ye,Jiangshuai Luo,Jili Jiang,Wanjun Li,Yuanqiang Xiong,Lijuan Ye,Di Pang,Yan Tang,Wanjun Li,Hong Zhang,Chunyang Kong
标识
DOI:10.1016/j.apsusc.2023.159022
摘要
With the advancement of Ga2O3-based deep-ultraviolet (DUV) photodetectors (PDs), the integration of PDs into array image sensors has become a sought-after objective. However, while solar-blind imaging research primarily revolves around solid-state Ga2O3-based PDs, there remains a significant gap in the exploration of novel photoelectrochemical (PEC) PDs for solar-blind imaging applications. In this study, self-powered solar-blind PEC-PDs with enhanced performance are fabricated based on α-Ga2O3@a-Al2O3 core–shell nanorod arrays (NRAs). Under DUV irradiation and without external bias, the α-Ga2O3@a-Al2O3 devices demonstrate remarkable superiority over α-Ga2O3 devices. When the light intensity was at 0.50 mW cm−2, the photocurrent density notably rises from 4.60 to 11.24 μA cm−2, accompanied by a corresponding increase in responsivity from 9.60 to 22.70 mA W−1. The enhanced performance is attributed to the α-Ga2O3@a-Al2O3 heterostructure, which establishes a built-in electric field facilitating the separation and directed transport of photogenerated carriers at the interface. Moreover, for the first time, a 5 × 5 matrix of α-Ga2O3@a-Al2O3 core–shell NRAs-based PEC-type PDs is employed to demonstrate a proof-of-concept for self-powered solar-blind imaging, capable of effectively capturing the shapes of the letters "C" and "N". This work underscores the immense potential of Ga2O3-based PEC-type PDs for future large-area solar-blind imaging applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI