Clarifying the dominated coercivity enhancement mechanism of grain boundary diffused Nd-Fe-B magnets by Pr-based alloys

矫顽力 材料科学 晶界扩散系数 晶界 磁铁 剩磁 凝聚态物理 晶格扩散系数 合金 扩散 微观结构 粒度 核磁共振 冶金 有效扩散系数 磁化 热力学 磁场 物理 放射科 医学 量子力学 磁共振成像
作者
Zhaozhao Wei,Xuhang Zhang,Chaochao Zeng,Zhigao Yu,Jiali Cao,Hongya Yu,Jiayi He,Zhongwu Liu
出处
期刊:Journal of Magnetism and Magnetic Materials [Elsevier BV]
卷期号:589: 171593-171593
标识
DOI:10.1016/j.jmmm.2023.171593
摘要

Low-melting point Pr-based alloys have been confirmed to be cost-effective grain boundary diffusion sources for enhancing the coercivity of Nd-Fe-B magnets. Various coercivity enhancement mechanisms have been reported for these alloys so far, but the dominated one has not been clarified. Here, the sintered Nd-Fe-B magnet was treated by Pr75Al25 alloy grain boundary diffusion at different temperatures. A detailed investigation on the diffusion kinetics of the elements and the microstructure evaluation have been carried out. After 800 °C diffusion, the intrinsic coercivity of the magnet increased from 1070 kA/m to 1348 kA/m without significant reduction of remanence. The increased rare earth-rich phase continuously distributed along the grain boundaries has great contribution to the magnetic decoupling, leading to high coercivity. In comparison, after 900 °C diffusion, although Pr and Al diffused more sufficiently in the magnet, a drastic lattice diffusion occurred and less grain boundary layer was formed, resulting in insufficient coercivity enhancement. The results thus indicate that, for Pr-Al diffusion, the formation of RE-rich layer is more important than that of (Nd,Pr)2Fe14B shell in order to enhance the coercivity. Therefore, different from that for heavy rare earth diffusion, the diffusion treatment for Pr-based sources should be carefully optimized to form continuous grain boundary phase and suppress the excessive lattice diffusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
刚刚
sunflower完成签到,获得积分0
1秒前
NexusExplorer应助Tuniverse_采纳,获得10
1秒前
joicelee199完成签到,获得积分10
1秒前
ChinaNiu发布了新的文献求助10
2秒前
Akim应助fff采纳,获得10
3秒前
小天发布了新的文献求助10
4秒前
4秒前
4秒前
As完成签到,获得积分20
4秒前
小黎发布了新的文献求助10
4秒前
夕诙发布了新的文献求助10
5秒前
止戈为武完成签到,获得积分10
5秒前
5秒前
再夕予发布了新的文献求助10
5秒前
平常的羊发布了新的文献求助10
5秒前
Kelly完成签到,获得积分10
5秒前
jinjun发布了新的文献求助10
6秒前
6秒前
zhuxx完成签到,获得积分20
7秒前
乐乐应助达古冰川采纳,获得10
7秒前
7秒前
青山渐青完成签到,获得积分10
7秒前
8秒前
8秒前
aaaaa发布了新的文献求助10
8秒前
WW发布了新的文献求助10
8秒前
9秒前
10秒前
10秒前
10秒前
11秒前
Too发布了新的文献求助10
11秒前
闫晓丽发布了新的文献求助10
11秒前
11秒前
科研通AI2S应助花凉采纳,获得10
11秒前
11111完成签到,获得积分10
12秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1500
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3772271
求助须知:如何正确求助?哪些是违规求助? 3317649
关于积分的说明 10186966
捐赠科研通 3032802
什么是DOI,文献DOI怎么找? 1663732
邀请新用户注册赠送积分活动 795908
科研通“疑难数据库(出版商)”最低求助积分说明 757100