High and low frequency wind power prediction based on Transformer and BiGRU-Attention

样本熵 熵(时间箭头) 希尔伯特-黄变换 计算机科学 隐马尔可夫模型 人工智能 变压器 模式识别(心理学) 算法 数学 白噪声 工程类 电信 物理 电气工程 量子力学 电压
作者
Shuangxin Wang,Jiarong Shi,Wei Yang,Qingyan Yin
出处
期刊:Energy [Elsevier BV]
卷期号:288: 129753-129753 被引量:36
标识
DOI:10.1016/j.energy.2023.129753
摘要

An accurate and reliable wind power prediction model has important significance for the operation of power systems and large-scale grid connection. This paper proposes a hybrid deep learning model, CEEMDAN-SE-TR-BiGRU-Attention, for high and low frequency wind power prediction by combining complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), sample entropy (SE), Transformer (TR) and bidirectional gated recurrent unit with attention mechanism (BiGRU-Attention). Firstly, the CEEMDAN decomposes the original wind power sequence into multiple sub-modes and a residual, and the sample entropy of each sub-sequence is calculated by restructuring the sequence, which can effectively alleviate the impact of the original non-stationary series on the accuracy and computational complexity. Next, the reconstructed sequences are further divided into high and low frequency sequences according to the sample entropy value of the original sequence. The Transformer and BiGRU-Attention models are respectively applied to the prediction of high frequency and low frequency sequences according to the characteristics of each sequence. Finally, the predicted values of all components are superimposed to obtain the final prediction results. Experiments are carried out on four datasets with different seasons, and different models are compared to illustrate the effectiveness and superiority of the proposed model. The experimental results show that the proposed model achieves better prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪慧咖啡豆完成签到,获得积分10
刚刚
zz发布了新的文献求助10
1秒前
1秒前
yangyangyang发布了新的文献求助10
2秒前
lucifer0922完成签到,获得积分10
4秒前
4秒前
生动听筠发布了新的文献求助10
4秒前
温柔梦曼发布了新的文献求助10
4秒前
彭于晏应助卓若之采纳,获得10
5秒前
认真的雪完成签到,获得积分10
5秒前
桐桐应助jonnyzhao采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
cns发布了新的文献求助10
5秒前
acchangg发布了新的文献求助10
5秒前
甲乙丙丁发布了新的文献求助10
6秒前
曹中明发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
9秒前
研友_VZG7GZ应助yangyangyang采纳,获得10
9秒前
打打应助july九月采纳,获得10
9秒前
健忘的初翠完成签到,获得积分10
9秒前
李铮完成签到,获得积分10
9秒前
搜集达人应助peipei采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
烟花应助zhang采纳,获得30
11秒前
小蘑菇应助keyan_zhou采纳,获得10
11秒前
12秒前
12秒前
12秒前
甜甜穆完成签到,获得积分10
12秒前
13秒前
13秒前
CipherSage应助科研通管家采纳,获得10
13秒前
缪风华完成签到,获得积分10
13秒前
英姑应助卓若之采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
烟花应助科研通管家采纳,获得10
14秒前
今后应助科研通管家采纳,获得10
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
An experimental and analytical investigation on the fatigue behaviour of fuselage riveted lap joints: The significance of the rivet squeeze force, and a comparison of 2024-T3 and Glare 3 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3664226
求助须知:如何正确求助?哪些是违规求助? 3224388
关于积分的说明 9757079
捐赠科研通 2934289
什么是DOI,文献DOI怎么找? 1606806
邀请新用户注册赠送积分活动 758804
科研通“疑难数据库(出版商)”最低求助积分说明 735010