High and low frequency wind power prediction based on Transformer and BiGRU-Attention

样本熵 熵(时间箭头) 希尔伯特-黄变换 计算机科学 隐马尔可夫模型 人工智能 变压器 模式识别(心理学) 算法 数学 白噪声 工程类 电信 物理 电气工程 量子力学 电压
作者
Shuangxin Wang,Jiarong Shi,Wei Yang,Qingyan Yin
出处
期刊:Energy [Elsevier BV]
卷期号:288: 129753-129753 被引量:50
标识
DOI:10.1016/j.energy.2023.129753
摘要

An accurate and reliable wind power prediction model has important significance for the operation of power systems and large-scale grid connection. This paper proposes a hybrid deep learning model, CEEMDAN-SE-TR-BiGRU-Attention, for high and low frequency wind power prediction by combining complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), sample entropy (SE), Transformer (TR) and bidirectional gated recurrent unit with attention mechanism (BiGRU-Attention). Firstly, the CEEMDAN decomposes the original wind power sequence into multiple sub-modes and a residual, and the sample entropy of each sub-sequence is calculated by restructuring the sequence, which can effectively alleviate the impact of the original non-stationary series on the accuracy and computational complexity. Next, the reconstructed sequences are further divided into high and low frequency sequences according to the sample entropy value of the original sequence. The Transformer and BiGRU-Attention models are respectively applied to the prediction of high frequency and low frequency sequences according to the characteristics of each sequence. Finally, the predicted values of all components are superimposed to obtain the final prediction results. Experiments are carried out on four datasets with different seasons, and different models are compared to illustrate the effectiveness and superiority of the proposed model. The experimental results show that the proposed model achieves better prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CodeCraft应助一个靓仔采纳,获得10
3秒前
4秒前
调皮雨灵完成签到 ,获得积分10
4秒前
hao完成签到,获得积分10
4秒前
英俊的铭应助沙漠大雕采纳,获得10
5秒前
zhq发布了新的文献求助10
5秒前
尛诺完成签到,获得积分10
6秒前
7秒前
芒果发布了新的文献求助10
8秒前
mm发布了新的文献求助10
8秒前
8秒前
Willer完成签到,获得积分10
9秒前
上官若男应助aiyawy采纳,获得10
11秒前
二十五完成签到,获得积分10
11秒前
12秒前
小马甲应助WN采纳,获得10
12秒前
youlico完成签到 ,获得积分10
12秒前
14秒前
15秒前
丁丁猫发布了新的文献求助10
16秒前
八里完成签到,获得积分10
16秒前
16秒前
guard发布了新的文献求助10
18秒前
qy完成签到,获得积分10
21秒前
星辰大海应助Steven采纳,获得10
22秒前
方法发布了新的文献求助10
23秒前
Orange应助天玄一刀采纳,获得10
24秒前
彭于晏应助Billie采纳,获得10
25秒前
风清扬发布了新的文献求助10
26秒前
27秒前
李健应助小石头采纳,获得10
27秒前
29秒前
小马甲应助欢喜的跳跳糖采纳,获得10
30秒前
30秒前
酷波er应助哈哈哈采纳,获得10
30秒前
xiaoshi发布了新的文献求助30
31秒前
淡淡博发布了新的文献求助10
31秒前
吴能文发布了新的文献求助10
31秒前
31秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962893
求助须知:如何正确求助?哪些是违规求助? 3508839
关于积分的说明 11143458
捐赠科研通 3241757
什么是DOI,文献DOI怎么找? 1791651
邀请新用户注册赠送积分活动 873058
科研通“疑难数据库(出版商)”最低求助积分说明 803579