已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Unbiased kidney-centric molecular categorization of chronic kidney disease as a step towards precision medicine

肾脏疾病 肾功能 医学 危险系数 蛋白尿 肾病科 生物信息学 内科学 生物 置信区间
作者
Anna Reznichenko,Viji Nair,Sean Eddy,Damian Fermin,Mark Tomilo,Timothy Slidel,Wenjun Ju,Ian Henry,Shawn S. Badal,Johnna D. Wesley,John T. Liles,Sven Moosmang,Julie M. Williams,Carol Moreno Quinn,Markus Bitzer,Jeffrey B. Hodgin,Laura Barisoni,Anil Karihaloo,Matthew D. Breyer,Kevin L. Duffin
出处
期刊:Kidney International [Elsevier]
卷期号:105 (6): 1263-1278 被引量:8
标识
DOI:10.1016/j.kint.2024.01.012
摘要

Current classification of chronic kidney disease (CKD) into stages using indirect systemic measures (estimated glomerular filtration rate (eGFR) and albuminuria) is agnostic to the heterogeneity of underlying molecular processes in the kidney thereby limiting precision medicine approaches. To generate a novel CKD categorization that directly reflects within kidney disease drivers we analyzed publicly available transcriptomic data from kidney biopsy tissue. A Self-Organizing Maps unsupervised artificial neural network machine-learning algorithm was used to stratify a total of 369 patients with CKD and 46 living kidney donors as healthy controls. Unbiased stratification of the discovery cohort resulted in identification of four novel molecular categories of disease termed CKD-Blue, CKD-Gold, CKD-Olive, CKD-Plum that were replicated in independent CKD and diabetic kidney disease datasets and can be further tested on any external data at kidneyclass.org. Each molecular category spanned across CKD stages and histopathological diagnoses and represented transcriptional activation of distinct biological pathways. Disease progression rates were highly significantly different between the molecular categories. CKD-Gold displayed rapid progression, with significant eGFR-adjusted Cox regression hazard ratio of 5.6 [1.01-31.3] for kidney failure and hazard ratio of 4.7 [1.3-16.5] for composite of kidney failure or a 40% or more eGFR decline. Urine proteomics revealed distinct patterns between the molecular categories, and a 25-protein signature was identified to distinguish CKD-Gold from other molecular categories. Thus, patient stratification based on kidney tissue omics offers a gateway to non-invasive biomarker-driven categorization and the potential for future clinical implementation, as a key step towards precision medicine in CKD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助虚幻的棉花糖采纳,获得10
1秒前
Zhoujian完成签到,获得积分10
2秒前
harmony完成签到 ,获得积分10
2秒前
5秒前
所所应助极品男大采纳,获得10
5秒前
甜美慕梅完成签到,获得积分10
5秒前
5秒前
H·Y完成签到,获得积分10
5秒前
JamesPei应助悦耳的黑米采纳,获得10
6秒前
单纯芹菜完成签到 ,获得积分10
7秒前
一小部分我完成签到 ,获得积分10
7秒前
wanci应助闪闪不言采纳,获得10
7秒前
KandaoW发布了新的文献求助10
8秒前
wancheng_发布了新的文献求助10
9秒前
12秒前
马文杰完成签到 ,获得积分10
12秒前
汪汪叫的小猫咪完成签到,获得积分10
13秒前
迟大猫应助这个东采纳,获得10
13秒前
14秒前
15秒前
沈家宁完成签到,获得积分20
15秒前
刘欢欢发布了新的文献求助10
15秒前
慕青应助思行思行采纳,获得10
17秒前
20秒前
田様应助务实一斩采纳,获得10
22秒前
善学以致用应助Ivan采纳,获得10
22秒前
24秒前
chloe0201发布了新的文献求助30
25秒前
25秒前
科研通AI5应助林小雨采纳,获得30
26秒前
至乐无乐完成签到 ,获得积分10
27秒前
完美世界应助刘欢欢采纳,获得10
29秒前
火火火完成签到,获得积分10
30秒前
30秒前
思行思行发布了新的文献求助10
30秒前
领导范儿应助Wink14551采纳,获得10
32秒前
33秒前
亭2007完成签到 ,获得积分10
35秒前
饱满破茧发布了新的文献求助10
35秒前
细腻的山水完成签到 ,获得积分10
38秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538812
求助须知:如何正确求助?哪些是违规求助? 3116497
关于积分的说明 9325545
捐赠科研通 2814404
什么是DOI,文献DOI怎么找? 1546605
邀请新用户注册赠送积分活动 720659
科研通“疑难数据库(出版商)”最低求助积分说明 712136