Unbiased kidney-centric molecular categorization of chronic kidney disease as a step towards precision medicine

肾脏疾病 肾功能 医学 危险系数 蛋白尿 肾病科 生物信息学 内科学 生物 置信区间
作者
Anna Reznichenko,Viji Nair,Sean Eddy,Damian Fermin,Mark Tomilo,Timothy Slidel,Wenjun Ju,Ian Henry,Shawn S. Badal,Johnna D. Wesley,John T. Liles,Sven Moosmang,Julie M. Williams,Carol Moreno Quinn,Markus Bitzer,Jeffrey B. Hodgin,Laura Barisoni,Anil Karihaloo,Matthew D. Breyer,Kevin L. Duffin
出处
期刊:Kidney International [Elsevier]
卷期号:105 (6): 1263-1278 被引量:8
标识
DOI:10.1016/j.kint.2024.01.012
摘要

Current classification of chronic kidney disease (CKD) into stages using indirect systemic measures (estimated glomerular filtration rate (eGFR) and albuminuria) is agnostic to the heterogeneity of underlying molecular processes in the kidney thereby limiting precision medicine approaches. To generate a novel CKD categorization that directly reflects within kidney disease drivers we analyzed publicly available transcriptomic data from kidney biopsy tissue. A Self-Organizing Maps unsupervised artificial neural network machine-learning algorithm was used to stratify a total of 369 patients with CKD and 46 living kidney donors as healthy controls. Unbiased stratification of the discovery cohort resulted in identification of four novel molecular categories of disease termed CKD-Blue, CKD-Gold, CKD-Olive, CKD-Plum that were replicated in independent CKD and diabetic kidney disease datasets and can be further tested on any external data at kidneyclass.org. Each molecular category spanned across CKD stages and histopathological diagnoses and represented transcriptional activation of distinct biological pathways. Disease progression rates were highly significantly different between the molecular categories. CKD-Gold displayed rapid progression, with significant eGFR-adjusted Cox regression hazard ratio of 5.6 [1.01-31.3] for kidney failure and hazard ratio of 4.7 [1.3-16.5] for composite of kidney failure or a 40% or more eGFR decline. Urine proteomics revealed distinct patterns between the molecular categories, and a 25-protein signature was identified to distinguish CKD-Gold from other molecular categories. Thus, patient stratification based on kidney tissue omics offers a gateway to non-invasive biomarker-driven categorization and the potential for future clinical implementation, as a key step towards precision medicine in CKD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zjy发布了新的文献求助10
2秒前
accept发布了新的文献求助10
2秒前
科研通AI6.1应助az采纳,获得10
3秒前
3秒前
3秒前
3秒前
Shinchan完成签到,获得积分10
4秒前
范拽拽给范拽拽的求助进行了留言
5秒前
niNe3YUE应助明理歌曲采纳,获得10
5秒前
6秒前
7秒前
传奇3应助ciwei采纳,获得10
8秒前
8秒前
Zoye发布了新的文献求助10
10秒前
大方明杰发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
小小青完成签到,获得积分10
13秒前
13秒前
敏感的鸿煊完成签到,获得积分10
14秒前
前进的小宅熊完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
YangSY发布了新的文献求助10
15秒前
莲莲发布了新的文献求助10
16秒前
CodeCraft应助搞怪的元槐采纳,获得30
17秒前
背后中心发布了新的文献求助10
17秒前
17秒前
asri1234发布了新的文献求助30
18秒前
清水胖子发布了新的文献求助30
18秒前
Lucas应助clueless采纳,获得10
19秒前
香菜发布了新的文献求助10
19秒前
21秒前
然大宝完成签到,获得积分10
21秒前
sdsa完成签到,获得积分10
21秒前
drift完成签到,获得积分10
22秒前
所所应助正直从阳采纳,获得10
23秒前
量子星尘发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770601
求助须知:如何正确求助?哪些是违规求助? 5586403
关于积分的说明 15424708
捐赠科研通 4904120
什么是DOI,文献DOI怎么找? 2638520
邀请新用户注册赠送积分活动 1586415
关于科研通互助平台的介绍 1541488