Unsupervised Hybrid Network of Transformer and CNN for Blind Hyperspectral and Multispectral Image Fusion

多光谱图像 高光谱成像 计算机科学 人工智能 图像融合 遥感 融合 多光谱模式识别 传感器融合 模式识别(心理学) 计算机视觉 图像(数学) 地质学 语言学 哲学
作者
Xuheng Cao,Yusheng Lian,Kaixuan Wang,Chao Ma,Xianqing Xu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:53
标识
DOI:10.1109/tgrs.2024.3359232
摘要

Fusing a low spatial resolution hyperspectral image with a high spatial resolution multispectral image has become popular for generating a high spatial resolution hyperspectral image (HR-HSI). Most methods assume that the degradation information from high resolution to low resolution is known in spatial and spectral domains. Conversely, this information is often limited or unavailable in practice, restricting their performance. Furthermore, existing fusion methods still face the problem of insufficient exploration of the cross-interaction between the spatial and spectral domains in the HR-HSI, leaving scope for further improvement. This paper proposes an unsupervised Hybrid Network of Transformer and CNN (uHNTC) for blind HSI-MSI fusion. The uHNTC comprises three subnetworks: a transformer-based feature fusion subnetwork (FeafusFomer) and two CNN-based degradation subnetworks (SpaDNet and SpeDNet). Considering the strong multi-level spatio-spectral correlation between the desired HR-HSI and the observed images, we design a Multi-level Cross-feature Attention (MCA) mechanism in FeafusFormer. By incorporating the hierarchical spatio-spectral feature fusion into the attention mechanism in the transformer, the MCA globally keeps a high spatio-spectral cross-similarity between the recovered HR-HSI and observed images, thereby ensuring the high cross-interaction of the recovered HR-HSI. Subsequently, the characteristics of degradation information are utilized to guide the design of the SpaDNet and SpeDNet, which helps FeafusFormer accurately recover the desired HR-HSI in complex real-world environments. Through an unsupervised joint training of the three subnetworks, uHNTC recovers the desired HR-HSI without pre-known degradation information. Experimental results on three public datasets and a WorldView-2 images show that the uHNTC outperforms ten state-of-the-art fusion methods. Code available: https://github.com/Caoxuheng/HIFtool.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Galaxy发布了新的文献求助10
1秒前
1秒前
1秒前
自觉凌蝶完成签到 ,获得积分10
1秒前
1秒前
tojobbb发布了新的文献求助10
2秒前
CN00016发布了新的文献求助10
2秒前
2秒前
affff完成签到 ,获得积分10
2秒前
2秒前
2秒前
Lucas应助wz采纳,获得10
2秒前
3秒前
3秒前
4秒前
4秒前
追风舞尘完成签到,获得积分20
4秒前
秀儿发布了新的文献求助10
4秒前
5秒前
沐易发布了新的文献求助10
5秒前
今后应助uncle采纳,获得10
5秒前
5秒前
共享精神应助快乐鞋垫采纳,获得10
6秒前
6秒前
天天快乐应助安详葶采纳,获得10
6秒前
英俊的铭应助巧克力曲奇采纳,获得10
6秒前
orixero应助wsqg123采纳,获得10
6秒前
方向完成签到,获得积分10
7秒前
7秒前
英姑应助霍师傅采纳,获得30
7秒前
lmy9988发布了新的文献求助10
7秒前
微瑕发布了新的文献求助10
8秒前
PG发布了新的文献求助10
9秒前
Dale发布了新的文献求助10
9秒前
追寻归尘发布了新的文献求助10
9秒前
方向发布了新的文献求助10
9秒前
10秒前
rebome驳回了yznfly应助
10秒前
tojobbb完成签到,获得积分10
10秒前
Boston发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609726
求助须知:如何正确求助?哪些是违规求助? 4694294
关于积分的说明 14881987
捐赠科研通 4720227
什么是DOI,文献DOI怎么找? 2544836
邀请新用户注册赠送积分活动 1509735
关于科研通互助平台的介绍 1472996