Unsupervised Hybrid Network of Transformer and CNN for Blind Hyperspectral and Multispectral Image Fusion

多光谱图像 高光谱成像 计算机科学 人工智能 图像融合 遥感 融合 多光谱模式识别 传感器融合 模式识别(心理学) 计算机视觉 图像(数学) 地质学 语言学 哲学
作者
Xuheng Cao,Yusheng Lian,Kaixuan Wang,Chao Ma,Xianqing Xu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:53
标识
DOI:10.1109/tgrs.2024.3359232
摘要

Fusing a low spatial resolution hyperspectral image with a high spatial resolution multispectral image has become popular for generating a high spatial resolution hyperspectral image (HR-HSI). Most methods assume that the degradation information from high resolution to low resolution is known in spatial and spectral domains. Conversely, this information is often limited or unavailable in practice, restricting their performance. Furthermore, existing fusion methods still face the problem of insufficient exploration of the cross-interaction between the spatial and spectral domains in the HR-HSI, leaving scope for further improvement. This paper proposes an unsupervised Hybrid Network of Transformer and CNN (uHNTC) for blind HSI-MSI fusion. The uHNTC comprises three subnetworks: a transformer-based feature fusion subnetwork (FeafusFomer) and two CNN-based degradation subnetworks (SpaDNet and SpeDNet). Considering the strong multi-level spatio-spectral correlation between the desired HR-HSI and the observed images, we design a Multi-level Cross-feature Attention (MCA) mechanism in FeafusFormer. By incorporating the hierarchical spatio-spectral feature fusion into the attention mechanism in the transformer, the MCA globally keeps a high spatio-spectral cross-similarity between the recovered HR-HSI and observed images, thereby ensuring the high cross-interaction of the recovered HR-HSI. Subsequently, the characteristics of degradation information are utilized to guide the design of the SpaDNet and SpeDNet, which helps FeafusFormer accurately recover the desired HR-HSI in complex real-world environments. Through an unsupervised joint training of the three subnetworks, uHNTC recovers the desired HR-HSI without pre-known degradation information. Experimental results on three public datasets and a WorldView-2 images show that the uHNTC outperforms ten state-of-the-art fusion methods. Code available: https://github.com/Caoxuheng/HIFtool.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忘的澜发布了新的文献求助10
刚刚
科研通AI2S应助wulanshu采纳,获得10
1秒前
香蕉觅云应助随遇而安采纳,获得10
1秒前
李爱国应助常常采纳,获得10
1秒前
Orange应助star采纳,获得10
1秒前
1秒前
2秒前
2秒前
科研通AI6应助CHENJINXI采纳,获得10
2秒前
悦耳人生发布了新的文献求助10
2秒前
王多肉发布了新的文献求助10
3秒前
3秒前
科研通AI6应助555采纳,获得10
3秒前
4秒前
陈影完成签到,获得积分10
4秒前
满意白开水完成签到,获得积分10
5秒前
科研通AI6应助缥缈的水彤采纳,获得10
5秒前
redflower发布了新的文献求助10
5秒前
JamesPei应助王与可采纳,获得10
6秒前
科研通AI6应助壮观的可以采纳,获得10
6秒前
Li完成签到,获得积分20
6秒前
李健应助cjw采纳,获得10
7秒前
7秒前
xiaominza发布了新的文献求助30
7秒前
万能图书馆应助西瓜妹采纳,获得10
7秒前
粗暴的达发布了新的文献求助10
7秒前
科研通AI6应助风中泰坦采纳,获得10
8秒前
8秒前
彭于晏应助长风采纳,获得10
8秒前
依克完成签到,获得积分10
8秒前
8秒前
8秒前
cccat发布了新的文献求助50
9秒前
格林维度关注了科研通微信公众号
9秒前
领导范儿应助忘的澜采纳,获得10
9秒前
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625544
求助须知:如何正确求助?哪些是违规求助? 4711411
关于积分的说明 14955483
捐赠科研通 4779507
什么是DOI,文献DOI怎么找? 2553786
邀请新用户注册赠送积分活动 1515698
关于科研通互助平台的介绍 1475905