亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Unsupervised Hybrid Network of Transformer and CNN for Blind Hyperspectral and Multispectral Image Fusion

多光谱图像 高光谱成像 计算机科学 人工智能 图像融合 遥感 融合 多光谱模式识别 传感器融合 模式识别(心理学) 计算机视觉 图像(数学) 地质学 语言学 哲学
作者
Xuheng Cao,Yusheng Lian,Kaixuan Wang,Chao Ma,Xianqing Xu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:21
标识
DOI:10.1109/tgrs.2024.3359232
摘要

Fusing a low spatial resolution hyperspectral image with a high spatial resolution multispectral image has become popular for generating a high spatial resolution hyperspectral image (HR-HSI). Most methods assume that the degradation information from high resolution to low resolution is known in spatial and spectral domains. Conversely, this information is often limited or unavailable in practice, restricting their performance. Furthermore, existing fusion methods still face the problem of insufficient exploration of the cross-interaction between the spatial and spectral domains in the HR-HSI, leaving scope for further improvement. This paper proposes an unsupervised Hybrid Network of Transformer and CNN (uHNTC) for blind HSI-MSI fusion. The uHNTC comprises three subnetworks: a transformer-based feature fusion subnetwork (FeafusFomer) and two CNN-based degradation subnetworks (SpaDNet and SpeDNet). Considering the strong multi-level spatio-spectral correlation between the desired HR-HSI and the observed images, we design a Multi-level Cross-feature Attention (MCA) mechanism in FeafusFormer. By incorporating the hierarchical spatio-spectral feature fusion into the attention mechanism in the transformer, the MCA globally keeps a high spatio-spectral cross-similarity between the recovered HR-HSI and observed images, thereby ensuring the high cross-interaction of the recovered HR-HSI. Subsequently, the characteristics of degradation information are utilized to guide the design of the SpaDNet and SpeDNet, which helps FeafusFormer accurately recover the desired HR-HSI in complex real-world environments. Through an unsupervised joint training of the three subnetworks, uHNTC recovers the desired HR-HSI without pre-known degradation information. Experimental results on three public datasets and a WorldView-2 images show that the uHNTC outperforms ten state-of-the-art fusion methods. Code available: https://github.com/Caoxuheng/HIFtool.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助guolong采纳,获得10
8秒前
喬老師完成签到,获得积分10
8秒前
9秒前
研友_59AB85发布了新的文献求助10
16秒前
番茄黄瓜芝士片完成签到 ,获得积分10
18秒前
宣灵薇完成签到,获得积分0
22秒前
在水一方应助研友_59AB85采纳,获得10
29秒前
研友_59AB85完成签到,获得积分10
35秒前
hanatae完成签到,获得积分10
35秒前
40秒前
云木完成签到 ,获得积分10
41秒前
量子星尘发布了新的文献求助10
53秒前
56秒前
Yina完成签到 ,获得积分10
56秒前
lcw完成签到 ,获得积分10
1分钟前
Sandy应助科研通管家采纳,获得20
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
cc应助科研通管家采纳,获得20
1分钟前
IfItheonlyone完成签到 ,获得积分10
1分钟前
沙脑完成签到 ,获得积分10
1分钟前
皮尔特桃仔完成签到,获得积分10
1分钟前
clhoxvpze完成签到 ,获得积分10
1分钟前
努力搞科研完成签到,获得积分10
1分钟前
1分钟前
研友_ZGRvon完成签到,获得积分0
1分钟前
Nuyoah发布了新的文献求助10
1分钟前
1分钟前
1分钟前
菜根谭完成签到 ,获得积分10
1分钟前
Shelly悦888发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
Nuyoah完成签到,获得积分10
2分钟前
可爱的函函应助高兴凡儿采纳,获得10
2分钟前
HY发布了新的文献求助10
2分钟前
小吴完成签到,获得积分10
2分钟前
学不完了完成签到 ,获得积分10
2分钟前
2分钟前
李婧薇发布了新的文献求助10
2分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960007
求助须知:如何正确求助?哪些是违规求助? 3506216
关于积分的说明 11128438
捐赠科研通 3238221
什么是DOI,文献DOI怎么找? 1789577
邀请新用户注册赠送积分活动 871829
科研通“疑难数据库(出版商)”最低求助积分说明 803056