Unsupervised Hybrid Network of Transformer and CNN for Blind Hyperspectral and Multispectral Image Fusion

多光谱图像 高光谱成像 计算机科学 人工智能 图像融合 遥感 融合 多光谱模式识别 传感器融合 模式识别(心理学) 计算机视觉 图像(数学) 地质学 语言学 哲学
作者
Xuheng Cao,Yusheng Lian,Kaixuan Wang,Chao Ma,Xianqing Xu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:21
标识
DOI:10.1109/tgrs.2024.3359232
摘要

Fusing a low spatial resolution hyperspectral image with a high spatial resolution multispectral image has become popular for generating a high spatial resolution hyperspectral image (HR-HSI). Most methods assume that the degradation information from high resolution to low resolution is known in spatial and spectral domains. Conversely, this information is often limited or unavailable in practice, restricting their performance. Furthermore, existing fusion methods still face the problem of insufficient exploration of the cross-interaction between the spatial and spectral domains in the HR-HSI, leaving scope for further improvement. This paper proposes an unsupervised Hybrid Network of Transformer and CNN (uHNTC) for blind HSI-MSI fusion. The uHNTC comprises three subnetworks: a transformer-based feature fusion subnetwork (FeafusFomer) and two CNN-based degradation subnetworks (SpaDNet and SpeDNet). Considering the strong multi-level spatio-spectral correlation between the desired HR-HSI and the observed images, we design a Multi-level Cross-feature Attention (MCA) mechanism in FeafusFormer. By incorporating the hierarchical spatio-spectral feature fusion into the attention mechanism in the transformer, the MCA globally keeps a high spatio-spectral cross-similarity between the recovered HR-HSI and observed images, thereby ensuring the high cross-interaction of the recovered HR-HSI. Subsequently, the characteristics of degradation information are utilized to guide the design of the SpaDNet and SpeDNet, which helps FeafusFormer accurately recover the desired HR-HSI in complex real-world environments. Through an unsupervised joint training of the three subnetworks, uHNTC recovers the desired HR-HSI without pre-known degradation information. Experimental results on three public datasets and a WorldView-2 images show that the uHNTC outperforms ten state-of-the-art fusion methods. Code available: https://github.com/Caoxuheng/HIFtool.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助憨憨采纳,获得10
刚刚
赘婿应助晴空万里采纳,获得10
刚刚
今后应助恩雁采纳,获得50
刚刚
tianzml0发布了新的文献求助10
1秒前
gfsuen发布了新的文献求助10
1秒前
大模型应助潇洒的血茗采纳,获得10
1秒前
自觉书琴完成签到 ,获得积分10
2秒前
2秒前
传奇3应助彭彭yr采纳,获得10
2秒前
李李完成签到 ,获得积分10
3秒前
奋斗靖仇完成签到 ,获得积分10
3秒前
4秒前
忧郁衬衫完成签到 ,获得积分10
4秒前
捏捏猫猫完成签到 ,获得积分10
5秒前
5165asd完成签到,获得积分10
5秒前
5秒前
mildJYY完成签到,获得积分10
6秒前
共享精神应助叫我富婆儿采纳,获得10
7秒前
兜有米发布了新的文献求助30
7秒前
科研通AI6应助DYW采纳,获得10
7秒前
量子星尘发布了新的文献求助150
9秒前
9秒前
coco发布了新的文献求助10
9秒前
9秒前
紫色的云完成签到,获得积分10
10秒前
10秒前
18746005898完成签到 ,获得积分10
11秒前
11秒前
甜甜圈完成签到,获得积分10
11秒前
13秒前
K先生完成签到,获得积分10
13秒前
14秒前
加缪应助5165asd采纳,获得10
14秒前
彭彭yr发布了新的文献求助10
15秒前
15秒前
dingdign发布了新的文献求助10
16秒前
16秒前
17秒前
17秒前
羊肉泡馍完成签到,获得积分10
18秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5129997
求助须知:如何正确求助?哪些是违规求助? 4332394
关于积分的说明 13497489
捐赠科研通 4168782
什么是DOI,文献DOI怎么找? 2285245
邀请新用户注册赠送积分活动 1286246
关于科研通互助平台的介绍 1227139