亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Unsupervised Hybrid Network of Transformer and CNN for Blind Hyperspectral and Multispectral Image Fusion

多光谱图像 高光谱成像 计算机科学 人工智能 图像融合 遥感 融合 多光谱模式识别 传感器融合 模式识别(心理学) 计算机视觉 图像(数学) 地质学 语言学 哲学
作者
Xuheng Cao,Yusheng Lian,Kaixuan Wang,Chao Ma,Xianqing Xu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:53
标识
DOI:10.1109/tgrs.2024.3359232
摘要

Fusing a low spatial resolution hyperspectral image with a high spatial resolution multispectral image has become popular for generating a high spatial resolution hyperspectral image (HR-HSI). Most methods assume that the degradation information from high resolution to low resolution is known in spatial and spectral domains. Conversely, this information is often limited or unavailable in practice, restricting their performance. Furthermore, existing fusion methods still face the problem of insufficient exploration of the cross-interaction between the spatial and spectral domains in the HR-HSI, leaving scope for further improvement. This paper proposes an unsupervised Hybrid Network of Transformer and CNN (uHNTC) for blind HSI-MSI fusion. The uHNTC comprises three subnetworks: a transformer-based feature fusion subnetwork (FeafusFomer) and two CNN-based degradation subnetworks (SpaDNet and SpeDNet). Considering the strong multi-level spatio-spectral correlation between the desired HR-HSI and the observed images, we design a Multi-level Cross-feature Attention (MCA) mechanism in FeafusFormer. By incorporating the hierarchical spatio-spectral feature fusion into the attention mechanism in the transformer, the MCA globally keeps a high spatio-spectral cross-similarity between the recovered HR-HSI and observed images, thereby ensuring the high cross-interaction of the recovered HR-HSI. Subsequently, the characteristics of degradation information are utilized to guide the design of the SpaDNet and SpeDNet, which helps FeafusFormer accurately recover the desired HR-HSI in complex real-world environments. Through an unsupervised joint training of the three subnetworks, uHNTC recovers the desired HR-HSI without pre-known degradation information. Experimental results on three public datasets and a WorldView-2 images show that the uHNTC outperforms ten state-of-the-art fusion methods. Code available: https://github.com/Caoxuheng/HIFtool.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhang123笛完成签到,获得积分10
2秒前
13秒前
钙钛矿电池发布了新的文献求助200
14秒前
14秒前
无花果应助一颗苹果采纳,获得10
18秒前
1900发布了新的文献求助10
19秒前
19秒前
空蝉发布了新的文献求助10
20秒前
20秒前
23秒前
科研通AI6应助空蝉采纳,获得10
29秒前
ivy发布了新的文献求助10
30秒前
Gryff完成签到 ,获得积分10
30秒前
1900完成签到,获得积分20
33秒前
34秒前
田様应助lxb采纳,获得10
38秒前
二狗完成签到 ,获得积分10
41秒前
光合作用完成签到,获得积分10
46秒前
王令完成签到,获得积分10
48秒前
务实书包完成签到,获得积分10
51秒前
王令发布了新的文献求助10
56秒前
彭于晏应助jamaisvu采纳,获得30
1分钟前
李爱国应助jamaisvu采纳,获得30
1分钟前
1分钟前
空空伊完成签到,获得积分10
1分钟前
1分钟前
Weiyu完成签到 ,获得积分10
1分钟前
1分钟前
silence完成签到 ,获得积分10
1分钟前
1分钟前
伯云完成签到,获得积分10
1分钟前
所所应助无语的寄文采纳,获得10
1分钟前
1分钟前
1分钟前
共享精神应助科研通管家采纳,获得10
1分钟前
无极微光应助科研通管家采纳,获得20
1分钟前
大个应助科研通管家采纳,获得10
1分钟前
ding应助科研通管家采纳,获得30
1分钟前
无极微光应助科研通管家采纳,获得20
1分钟前
淡定绮波应助科研通管家采纳,获得200
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5528934
求助须知:如何正确求助?哪些是违规求助? 4618236
关于积分的说明 14562294
捐赠科研通 4557142
什么是DOI,文献DOI怎么找? 2497360
邀请新用户注册赠送积分活动 1477590
关于科研通互助平台的介绍 1448890