已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Unsupervised Hybrid Network of Transformer and CNN for Blind Hyperspectral and Multispectral Image Fusion

多光谱图像 高光谱成像 计算机科学 人工智能 图像融合 遥感 融合 多光谱模式识别 传感器融合 模式识别(心理学) 计算机视觉 图像(数学) 地质学 语言学 哲学
作者
Xuheng Cao,Yusheng Lian,Kaixuan Wang,Chao Ma,Xianqing Xu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:7
标识
DOI:10.1109/tgrs.2024.3359232
摘要

Fusing a low spatial resolution hyperspectral image with a high spatial resolution multispectral image has become popular for generating a high spatial resolution hyperspectral image (HR-HSI). Most methods assume that the degradation information from high resolution to low resolution is known in spatial and spectral domains. Conversely, this information is often limited or unavailable in practice, restricting their performance. Furthermore, existing fusion methods still face the problem of insufficient exploration of the cross-interaction between the spatial and spectral domains in the HR-HSI, leaving scope for further improvement. This paper proposes an unsupervised Hybrid Network of Transformer and CNN (uHNTC) for blind HSI-MSI fusion. The uHNTC comprises three subnetworks: a transformer-based feature fusion subnetwork (FeafusFomer) and two CNN-based degradation subnetworks (SpaDNet and SpeDNet). Considering the strong multi-level spatio-spectral correlation between the desired HR-HSI and the observed images, we design a Multi-level Cross-feature Attention (MCA) mechanism in FeafusFormer. By incorporating the hierarchical spatio-spectral feature fusion into the attention mechanism in the transformer, the MCA globally keeps a high spatio-spectral cross-similarity between the recovered HR-HSI and observed images, thereby ensuring the high cross-interaction of the recovered HR-HSI. Subsequently, the characteristics of degradation information are utilized to guide the design of the SpaDNet and SpeDNet, which helps FeafusFormer accurately recover the desired HR-HSI in complex real-world environments. Through an unsupervised joint training of the three subnetworks, uHNTC recovers the desired HR-HSI without pre-known degradation information. Experimental results on three public datasets and a WorldView-2 images show that the uHNTC outperforms ten state-of-the-art fusion methods. Code available: https://github.com/Caoxuheng/HIFtool.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
干羞花完成签到,获得积分10
刚刚
小二郎完成签到,获得积分10
1秒前
3秒前
dai发布了新的文献求助10
3秒前
9秒前
9秒前
研友_8RlG1n完成签到,获得积分10
11秒前
诗梦完成签到,获得积分10
14秒前
遇more完成签到 ,获得积分10
17秒前
TS发布了新的文献求助10
17秒前
vv完成签到 ,获得积分10
19秒前
子焱发布了新的文献求助10
20秒前
21秒前
完美世界应助jinni采纳,获得10
26秒前
myelin发布了新的文献求助10
27秒前
可爱的函函应助子焱采纳,获得10
28秒前
zr92驳回了mmmm应助
32秒前
英勇明雪完成签到,获得积分10
34秒前
39秒前
汉堡包应助科研通管家采纳,获得10
41秒前
小马甲应助科研通管家采纳,获得10
41秒前
斯文败类应助科研通管家采纳,获得10
41秒前
shinysparrow应助科研通管家采纳,获得100
41秒前
41秒前
田様应助富马酸小小采纳,获得20
42秒前
二十发布了新的文献求助30
43秒前
45秒前
50秒前
jinni发布了新的文献求助10
50秒前
玲龙雨完成签到 ,获得积分10
52秒前
科研通AI2S应助cfyoung采纳,获得10
52秒前
Echodeng完成签到,获得积分10
53秒前
陈独秀完成签到,获得积分10
54秒前
开朗的达完成签到,获得积分10
57秒前
风-FBDD完成签到,获得积分10
1分钟前
共享精神应助hong采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
魏魏发布了新的文献求助10
1分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161905
求助须知:如何正确求助?哪些是违规求助? 2813139
关于积分的说明 7898729
捐赠科研通 2472140
什么是DOI,文献DOI怎么找? 1316366
科研通“疑难数据库(出版商)”最低求助积分说明 631278
版权声明 602129