Unsupervised Hybrid Network of Transformer and CNN for Blind Hyperspectral and Multispectral Image Fusion

多光谱图像 高光谱成像 计算机科学 人工智能 图像融合 遥感 融合 多光谱模式识别 传感器融合 模式识别(心理学) 计算机视觉 图像(数学) 地质学 语言学 哲学
作者
Xuheng Cao,Yusheng Lian,Kaixuan Wang,Chao Ma,Xianqing Xu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:53
标识
DOI:10.1109/tgrs.2024.3359232
摘要

Fusing a low spatial resolution hyperspectral image with a high spatial resolution multispectral image has become popular for generating a high spatial resolution hyperspectral image (HR-HSI). Most methods assume that the degradation information from high resolution to low resolution is known in spatial and spectral domains. Conversely, this information is often limited or unavailable in practice, restricting their performance. Furthermore, existing fusion methods still face the problem of insufficient exploration of the cross-interaction between the spatial and spectral domains in the HR-HSI, leaving scope for further improvement. This paper proposes an unsupervised Hybrid Network of Transformer and CNN (uHNTC) for blind HSI-MSI fusion. The uHNTC comprises three subnetworks: a transformer-based feature fusion subnetwork (FeafusFomer) and two CNN-based degradation subnetworks (SpaDNet and SpeDNet). Considering the strong multi-level spatio-spectral correlation between the desired HR-HSI and the observed images, we design a Multi-level Cross-feature Attention (MCA) mechanism in FeafusFormer. By incorporating the hierarchical spatio-spectral feature fusion into the attention mechanism in the transformer, the MCA globally keeps a high spatio-spectral cross-similarity between the recovered HR-HSI and observed images, thereby ensuring the high cross-interaction of the recovered HR-HSI. Subsequently, the characteristics of degradation information are utilized to guide the design of the SpaDNet and SpeDNet, which helps FeafusFormer accurately recover the desired HR-HSI in complex real-world environments. Through an unsupervised joint training of the three subnetworks, uHNTC recovers the desired HR-HSI without pre-known degradation information. Experimental results on three public datasets and a WorldView-2 images show that the uHNTC outperforms ten state-of-the-art fusion methods. Code available: https://github.com/Caoxuheng/HIFtool.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaohe完成签到 ,获得积分10
1秒前
ATOM发布了新的文献求助10
2秒前
明天更好完成签到 ,获得积分10
2秒前
朝天椒发布了新的文献求助10
2秒前
gaowei完成签到,获得积分10
3秒前
糊涂的觅海完成签到 ,获得积分10
3秒前
闫小闫完成签到 ,获得积分10
4秒前
5秒前
冬月完成签到,获得积分10
7秒前
稳重诗珊完成签到,获得积分10
8秒前
超开心发布了新的文献求助10
9秒前
小象完成签到,获得积分10
12秒前
伶舟行发布了新的文献求助20
13秒前
JamesPei应助kaka采纳,获得10
13秒前
QXP完成签到,获得积分10
14秒前
俏皮的松鼠完成签到 ,获得积分10
14秒前
耍酷千亦完成签到 ,获得积分10
14秒前
CLZ完成签到 ,获得积分10
15秒前
包子牛奶完成签到,获得积分10
17秒前
朝天椒完成签到,获得积分10
17秒前
lailai完成签到,获得积分10
17秒前
玩命的十三完成签到 ,获得积分10
19秒前
19秒前
lintao0836完成签到,获得积分20
19秒前
落寞的寒云完成签到 ,获得积分10
19秒前
杨凡完成签到,获得积分10
20秒前
生动路人发布了新的文献求助10
20秒前
winwin完成签到,获得积分10
21秒前
hui完成签到 ,获得积分10
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
wanci应助科研通管家采纳,获得10
22秒前
丘比特应助科研通管家采纳,获得10
22秒前
张无忌应助科研通管家采纳,获得10
22秒前
张无忌应助科研通管家采纳,获得10
22秒前
张无忌应助科研通管家采纳,获得10
22秒前
Ds应助科研通管家采纳,获得10
22秒前
小青椒应助科研通管家采纳,获得20
22秒前
Ds应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
传奇3应助科研通管家采纳,获得10
22秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212768
求助须知:如何正确求助?哪些是违规求助? 4388811
关于积分的说明 13664730
捐赠科研通 4249506
什么是DOI,文献DOI怎么找? 2331607
邀请新用户注册赠送积分活动 1329321
关于科研通互助平台的介绍 1282787