已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Unsupervised Hybrid Network of Transformer and CNN for Blind Hyperspectral and Multispectral Image Fusion

多光谱图像 高光谱成像 计算机科学 人工智能 图像融合 遥感 融合 多光谱模式识别 传感器融合 模式识别(心理学) 计算机视觉 图像(数学) 地质学 语言学 哲学
作者
Xuheng Cao,Yusheng Lian,Kaixuan Wang,Chao Ma,Xianqing Xu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:21
标识
DOI:10.1109/tgrs.2024.3359232
摘要

Fusing a low spatial resolution hyperspectral image with a high spatial resolution multispectral image has become popular for generating a high spatial resolution hyperspectral image (HR-HSI). Most methods assume that the degradation information from high resolution to low resolution is known in spatial and spectral domains. Conversely, this information is often limited or unavailable in practice, restricting their performance. Furthermore, existing fusion methods still face the problem of insufficient exploration of the cross-interaction between the spatial and spectral domains in the HR-HSI, leaving scope for further improvement. This paper proposes an unsupervised Hybrid Network of Transformer and CNN (uHNTC) for blind HSI-MSI fusion. The uHNTC comprises three subnetworks: a transformer-based feature fusion subnetwork (FeafusFomer) and two CNN-based degradation subnetworks (SpaDNet and SpeDNet). Considering the strong multi-level spatio-spectral correlation between the desired HR-HSI and the observed images, we design a Multi-level Cross-feature Attention (MCA) mechanism in FeafusFormer. By incorporating the hierarchical spatio-spectral feature fusion into the attention mechanism in the transformer, the MCA globally keeps a high spatio-spectral cross-similarity between the recovered HR-HSI and observed images, thereby ensuring the high cross-interaction of the recovered HR-HSI. Subsequently, the characteristics of degradation information are utilized to guide the design of the SpaDNet and SpeDNet, which helps FeafusFormer accurately recover the desired HR-HSI in complex real-world environments. Through an unsupervised joint training of the three subnetworks, uHNTC recovers the desired HR-HSI without pre-known degradation information. Experimental results on three public datasets and a WorldView-2 images show that the uHNTC outperforms ten state-of-the-art fusion methods. Code available: https://github.com/Caoxuheng/HIFtool.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笑点低南霜完成签到 ,获得积分10
刚刚
1秒前
烂漫衫完成签到,获得积分10
1秒前
2秒前
2秒前
浮浮世世发布了新的文献求助30
3秒前
王饱饱完成签到 ,获得积分10
3秒前
顾影完成签到 ,获得积分10
3秒前
4秒前
夏夜完成签到 ,获得积分10
6秒前
落寞白曼完成签到,获得积分10
7秒前
7秒前
科研通AI2S应助科研通管家采纳,获得30
7秒前
852应助科研通管家采纳,获得30
7秒前
七一安完成签到 ,获得积分10
7秒前
7秒前
7秒前
科研通AI6应助kgdzj采纳,获得30
10秒前
阔达静曼完成签到 ,获得积分10
11秒前
坑坑完成签到,获得积分10
11秒前
北北完成签到 ,获得积分10
11秒前
沃沃爹完成签到,获得积分10
14秒前
Owen应助cap科研小能手采纳,获得30
14秒前
斯文败类应助方班术采纳,获得10
14秒前
lrh完成签到,获得积分10
15秒前
QMCL完成签到,获得积分0
18秒前
敏感板栗完成签到,获得积分10
18秒前
20秒前
我是老大应助寒冷念文采纳,获得10
21秒前
bkagyin应助坑坑采纳,获得10
22秒前
TongKY完成签到 ,获得积分10
23秒前
ywayw完成签到,获得积分10
24秒前
dangziutiu完成签到 ,获得积分10
24秒前
24秒前
可爱的函函应助lrh采纳,获得10
24秒前
义气的元柏完成签到 ,获得积分10
26秒前
28秒前
29秒前
Akim应助CNS_Fighter88采纳,获得10
30秒前
mengchen发布了新的文献求助30
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4539559
求助须知:如何正确求助?哪些是违规求助? 3973721
关于积分的说明 12309443
捐赠科研通 3640672
什么是DOI,文献DOI怎么找? 2004626
邀请新用户注册赠送积分活动 1040073
科研通“疑难数据库(出版商)”最低求助积分说明 929197