亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fuzzy Adaptive Knowledge-Based Inference Neural Networks: Design and Analysis

自适应神经模糊推理系统 计算机科学 数据挖掘 聚类分析 人工智能 模糊逻辑 维数之咒 人工神经网络 机器学习 神经模糊 推论 模糊聚类 一般化 模糊控制系统 数学 数学分析
作者
Shuangrong Liu,Sung‐Kwun Oh,Witold Pedrycz,Bo Yang,Lin Wang,Kisung Seo
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tcyb.2024.3353753
摘要

A novel fuzzy adaptive knowledge-based inference neural network (FAKINN) is proposed in this study. Conventional fuzzy cluster-based neural networks (FCBNNs) suffer from the challenge of a direct extraction of fuzzy rules that can capture and represent the interclass heterogeneity and intraclass homogeneity when the data possess complex structures. Moreover, the capability of the cluster-based rule generator in FCBNNs may decrease with the increase of data dimensionality. These drawbacks impede the generation of desired fuzzy rules, and affect the inference results depending on the fuzzy rules, thereby limiting their generalization ability. To address these drawbacks, an adaptive knowledge generator (AKG), consisting of the observation paradigm (OP) and clustering strategy (CS), is effectively designed to improve the generalization ability in FAKINN. The OP distills the characteristic information (CI) from data to highlight the homogeneity and heterogeneity of objects, and the CS, viz., the weighted condition-driven fuzzy clustering method (WCFCM), is proposed to summarize the CI to construct fuzzy rules. Moreover, the feedback between the OP and CS can control the dimensionality of CI, which endows FAKINN with the potential to tackle high-dimensional data. The main originality of the study focuses on the AKG and WCFCM that are proposed to develop the structural design methodology of FNNs. The performance of FAKINN is evaluated on various benchmarks with 27 comparative methods, and two real-world problems are adopted to validate its effectiveness. Experimental results show that FAKINN outperforms the comparison methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Weiyu完成签到 ,获得积分10
7秒前
WUHUIWEN完成签到,获得积分10
16秒前
17秒前
21秒前
领导范儿应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
大个应助科研通管家采纳,获得10
22秒前
22秒前
24秒前
yyyalles发布了新的文献求助30
24秒前
潇湘雪月发布了新的文献求助20
25秒前
38秒前
45秒前
方的圆完成签到,获得积分10
49秒前
zsp发布了新的文献求助30
49秒前
清秀的宝马完成签到 ,获得积分10
1分钟前
alex_zhao完成签到,获得积分10
1分钟前
xiuxiuzhang完成签到 ,获得积分10
1分钟前
Jason完成签到 ,获得积分10
1分钟前
zqq完成签到,获得积分0
1分钟前
沿途有你完成签到 ,获得积分10
1分钟前
白酒RH完成签到 ,获得积分10
1分钟前
njxray完成签到 ,获得积分10
1分钟前
zmmm发布了新的文献求助10
1分钟前
zmmm完成签到,获得积分10
1分钟前
1分钟前
千山暮雪发布了新的文献求助30
1分钟前
1分钟前
2分钟前
jn完成签到,获得积分10
2分钟前
2分钟前
千山暮雪完成签到,获得积分10
2分钟前
灵巧大地完成签到,获得积分10
2分钟前
隐形曼青应助科研通管家采纳,获得10
2分钟前
moiumuio完成签到,获得积分10
2分钟前
9239完成签到 ,获得积分10
2分钟前
SciGPT应助小鹿采纳,获得10
2分钟前
2分钟前
2分钟前
认真映真发布了新的文献求助10
3分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965659
求助须知:如何正确求助?哪些是违规求助? 3510902
关于积分的说明 11155538
捐赠科研通 3245353
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874161
科研通“疑难数据库(出版商)”最低求助积分说明 804214