Fuzzy Adaptive Knowledge-Based Inference Neural Networks: Design and Analysis

自适应神经模糊推理系统 计算机科学 数据挖掘 聚类分析 人工智能 模糊逻辑 维数之咒 人工神经网络 机器学习 神经模糊 推论 模糊聚类 一般化 模糊控制系统 数学 数学分析
作者
Shuangrong Liu,Sung‐Kwun Oh,Witold Pedrycz,Bo Yang,Lin Wang,Kisung Seo
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (9): 4875-4888 被引量:3
标识
DOI:10.1109/tcyb.2024.3353753
摘要

A novel fuzzy adaptive knowledge-based inference neural network (FAKINN) is proposed in this study. Conventional fuzzy cluster-based neural networks (FCBNNs) suffer from the challenge of a direct extraction of fuzzy rules that can capture and represent the interclass heterogeneity and intraclass homogeneity when the data possess complex structures. Moreover, the capability of the cluster-based rule generator in FCBNNs may decrease with the increase of data dimensionality. These drawbacks impede the generation of desired fuzzy rules, and affect the inference results depending on the fuzzy rules, thereby limiting their generalization ability. To address these drawbacks, an adaptive knowledge generator (AKG), consisting of the observation paradigm (OP) and clustering strategy (CS), is effectively designed to improve the generalization ability in FAKINN. The OP distills the characteristic information (CI) from data to highlight the homogeneity and heterogeneity of objects, and the CS, viz., the weighted condition-driven fuzzy clustering method (WCFCM), is proposed to summarize the CI to construct fuzzy rules. Moreover, the feedback between the OP and CS can control the dimensionality of CI, which endows FAKINN with the potential to tackle high-dimensional data. The main originality of the study focuses on the AKG and WCFCM that are proposed to develop the structural design methodology of FNNs. The performance of FAKINN is evaluated on various benchmarks with 27 comparative methods, and two real-world problems are adopted to validate its effectiveness. Experimental results show that FAKINN outperforms the comparison methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小文cremen完成签到 ,获得积分10
刚刚
卢雨生发布了新的文献求助10
2秒前
科研通AI2S应助abdo采纳,获得10
6秒前
卢雨生完成签到,获得积分20
8秒前
gf完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
13秒前
西山菩提完成签到,获得积分10
14秒前
科研的人完成签到 ,获得积分10
23秒前
海阔天空完成签到 ,获得积分10
26秒前
量子星尘发布了新的文献求助10
35秒前
小石头完成签到 ,获得积分10
36秒前
wujiwuhui完成签到 ,获得积分10
38秒前
Ye应助lily采纳,获得10
40秒前
灵巧的长颈鹿完成签到,获得积分10
47秒前
随心所欲完成签到 ,获得积分10
47秒前
48秒前
48秒前
Lillianzhu1完成签到,获得积分10
48秒前
量子星尘发布了新的文献求助50
48秒前
淞淞于我完成签到 ,获得积分10
49秒前
49秒前
BowieHuang应助科研通管家采纳,获得10
49秒前
49秒前
49秒前
汉堡包应助科研通管家采纳,获得10
49秒前
49秒前
充电宝应助科研通管家采纳,获得10
49秒前
49秒前
BowieHuang应助科研通管家采纳,获得10
49秒前
49秒前
华仔应助科研通管家采纳,获得10
49秒前
49秒前
桐桐应助科研通管家采纳,获得10
49秒前
科研通AI2S应助科研通管家采纳,获得10
49秒前
49秒前
科研土狗完成签到 ,获得积分10
53秒前
科研通AI2S应助summer采纳,获得10
56秒前
量子星尘发布了新的文献求助10
1分钟前
凉面完成签到 ,获得积分10
1分钟前
好大的雨完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789276
求助须知:如何正确求助?哪些是违规求助? 5717838
关于积分的说明 15474408
捐赠科研通 4917162
什么是DOI,文献DOI怎么找? 2646802
邀请新用户注册赠送积分活动 1594470
关于科研通互助平台的介绍 1548951