Fuzzy Adaptive Knowledge-Based Inference Neural Networks: Design and Analysis

自适应神经模糊推理系统 计算机科学 数据挖掘 聚类分析 人工智能 模糊逻辑 维数之咒 人工神经网络 机器学习 神经模糊 推论 模糊聚类 一般化 模糊控制系统 数学 数学分析
作者
Shuangrong Liu,Sung‐Kwun Oh,Witold Pedrycz,Bo Yang,Lin Wang,Kisung Seo
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tcyb.2024.3353753
摘要

A novel fuzzy adaptive knowledge-based inference neural network (FAKINN) is proposed in this study. Conventional fuzzy cluster-based neural networks (FCBNNs) suffer from the challenge of a direct extraction of fuzzy rules that can capture and represent the interclass heterogeneity and intraclass homogeneity when the data possess complex structures. Moreover, the capability of the cluster-based rule generator in FCBNNs may decrease with the increase of data dimensionality. These drawbacks impede the generation of desired fuzzy rules, and affect the inference results depending on the fuzzy rules, thereby limiting their generalization ability. To address these drawbacks, an adaptive knowledge generator (AKG), consisting of the observation paradigm (OP) and clustering strategy (CS), is effectively designed to improve the generalization ability in FAKINN. The OP distills the characteristic information (CI) from data to highlight the homogeneity and heterogeneity of objects, and the CS, viz., the weighted condition-driven fuzzy clustering method (WCFCM), is proposed to summarize the CI to construct fuzzy rules. Moreover, the feedback between the OP and CS can control the dimensionality of CI, which endows FAKINN with the potential to tackle high-dimensional data. The main originality of the study focuses on the AKG and WCFCM that are proposed to develop the structural design methodology of FNNs. The performance of FAKINN is evaluated on various benchmarks with 27 comparative methods, and two real-world problems are adopted to validate its effectiveness. Experimental results show that FAKINN outperforms the comparison methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zxy完成签到,获得积分10
1秒前
2秒前
嘎嘎完成签到,获得积分10
2秒前
janice完成签到,获得积分10
3秒前
TearMarks完成签到 ,获得积分10
3秒前
安静的冰蓝完成签到 ,获得积分10
5秒前
5秒前
海丽完成签到 ,获得积分10
5秒前
cc完成签到,获得积分10
6秒前
ding应助无语的菠萝采纳,获得10
6秒前
林林完成签到,获得积分10
6秒前
网再快点发布了新的文献求助10
6秒前
7秒前
Jasper应助寒灯独夜人采纳,获得10
8秒前
8秒前
12秒前
14秒前
tsuki发布了新的文献求助10
15秒前
科研通AI5应助石页采纳,获得10
18秒前
19秒前
蔡蔡蔡发布了新的文献求助10
19秒前
George完成签到 ,获得积分10
22秒前
kbcbwb2002完成签到,获得积分10
24秒前
26秒前
HEIKU应助janice采纳,获得10
26秒前
白桃完成签到,获得积分10
28秒前
bei完成签到,获得积分10
28秒前
竹筏过海应助忆寒采纳,获得50
30秒前
Jasper应助小杨采纳,获得10
31秒前
洁净龙猫发布了新的文献求助10
31秒前
31秒前
blue-鱼完成签到,获得积分10
32秒前
扑火退羽完成签到,获得积分10
32秒前
32秒前
梦幻完成签到,获得积分10
34秒前
Cactus应助成就的紫伊采纳,获得10
34秒前
寂寞酷鑫完成签到,获得积分10
35秒前
35秒前
棋鬼王发布了新的文献求助10
37秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737404
求助须知:如何正确求助?哪些是违规求助? 3281212
关于积分的说明 10023771
捐赠科研通 2997969
什么是DOI,文献DOI怎么找? 1644880
邀请新用户注册赠送积分活动 782390
科研通“疑难数据库(出版商)”最低求助积分说明 749782