Thermal proteome profiling and machine learning modeling for dissecting chemical-protein interactions in environmental toxicology: A mini-review and perspectives

仿形(计算机编程) 蛋白质组 不良结局途径 污染物 计算生物学 生化工程 计算机科学 化学安全 化学 生物信息学 生物 生态学 工程类 操作系统
作者
Zimeng Wu,Zhiqiang Fu,Xiaomei Yu,Jingwen Chen
出处
期刊:Critical Reviews in Environmental Science and Technology [Informa]
卷期号:54 (20): 1478-1500 被引量:1
标识
DOI:10.1080/10643389.2024.2320753
摘要

High throughput in vitro assays for screening chemical hazards focus primarily on specific receptors that are linked with certain adverse outcome pathways, neglecting potential novel endpoints or pathways induced by emerging pollutants. Identifying target proteins that interact with pollutants contributes to finding potential molecular initiating events under the adverse outcome pathways framework. Mass spectrometry-based thermal proteome profiling (TPP) assays have permitted uncovering binding targets of pollutants across the whole proteome. Based on the principle that proteins are thermally stabilized after binding with chemicals, TPP differentiates protein targets by determining the soluble fraction of proteins that remain stable after heat stress. Thus, TPP facilitates qualitative and quantitative measurements of chemical-protein interactions (CPIs) without modifications on chemical structures or immobilization of target proteins. In this mini-review, we introduced the principles, development and procedures of TPP, and summarized its applications in identifying protein targets and speculating toxicity pathways for emerging pollutants in environmental toxicological studies. Additionally, since measurements of CPIs using TPP for multiple chemicals could be labor- and cost-intensive, machine learning-based modeling is a feasible alternative to dissect CPIs due to its capability to mine intrinsic properties determining CPIs. Therefore, the recent development of machine learning models for CPI prediction was reviewed. Lastly, we envisioned prospects of combining TPP data with machine learning for CPI prediction, and the possibility of applying TPP to interpret toxicity pathways and phenotypes generated from multi-omics data, to inform future environmental toxicological research on forecasting targets and outcomes for emerging pollutants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木头完成签到,获得积分10
刚刚
1秒前
1秒前
yongjiang应助熊猫小肿采纳,获得10
1秒前
洋洋完成签到,获得积分10
1秒前
何香稳发布了新的文献求助10
1秒前
2秒前
HightLight发布了新的文献求助10
2秒前
炙热尔烟发布了新的文献求助10
2秒前
3秒前
3秒前
copyj发布了新的文献求助10
3秒前
3秒前
5秒前
lurongjun发布了新的文献求助10
5秒前
Janisa发布了新的文献求助10
5秒前
6秒前
小涛涛发布了新的文献求助10
7秒前
丸橙完成签到,获得积分10
7秒前
weixiao发布了新的文献求助10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
丸橙发布了新的文献求助10
10秒前
qqqq发布了新的文献求助10
10秒前
10秒前
dameng完成签到 ,获得积分10
10秒前
小八统治世界完成签到,获得积分10
11秒前
愉快无施发布了新的文献求助30
11秒前
11秒前
12秒前
13秒前
科研通AI6应助Kevin63采纳,获得10
14秒前
k_1发布了新的文献求助10
14秒前
饼干吃土豆关注了科研通微信公众号
14秒前
15秒前
dong发布了新的文献求助10
16秒前
方法发布了新的文献求助10
17秒前
破天富贵玩命追我完成签到 ,获得积分10
17秒前
赘婿应助门小楠采纳,获得10
17秒前
科研通AI6应助Janisa采纳,获得30
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577556
求助须知:如何正确求助?哪些是违规求助? 4662649
关于积分的说明 14742832
捐赠科研通 4603346
什么是DOI,文献DOI怎么找? 2526283
邀请新用户注册赠送积分活动 1496084
关于科研通互助平台的介绍 1465546