Thermal proteome profiling and machine learning modeling for dissecting chemical-protein interactions in environmental toxicology: A mini-review and perspectives

仿形(计算机编程) 蛋白质组 不良结局途径 污染物 计算生物学 生化工程 计算机科学 化学安全 化学 生物信息学 生物 生态学 工程类 操作系统
作者
Zimeng Wu,Zhiqiang Fu,Xiaomei Yu,Jingwen Chen
出处
期刊:Critical Reviews in Environmental Science and Technology [Informa]
卷期号:54 (20): 1478-1500 被引量:1
标识
DOI:10.1080/10643389.2024.2320753
摘要

High throughput in vitro assays for screening chemical hazards focus primarily on specific receptors that are linked with certain adverse outcome pathways, neglecting potential novel endpoints or pathways induced by emerging pollutants. Identifying target proteins that interact with pollutants contributes to finding potential molecular initiating events under the adverse outcome pathways framework. Mass spectrometry-based thermal proteome profiling (TPP) assays have permitted uncovering binding targets of pollutants across the whole proteome. Based on the principle that proteins are thermally stabilized after binding with chemicals, TPP differentiates protein targets by determining the soluble fraction of proteins that remain stable after heat stress. Thus, TPP facilitates qualitative and quantitative measurements of chemical-protein interactions (CPIs) without modifications on chemical structures or immobilization of target proteins. In this mini-review, we introduced the principles, development and procedures of TPP, and summarized its applications in identifying protein targets and speculating toxicity pathways for emerging pollutants in environmental toxicological studies. Additionally, since measurements of CPIs using TPP for multiple chemicals could be labor- and cost-intensive, machine learning-based modeling is a feasible alternative to dissect CPIs due to its capability to mine intrinsic properties determining CPIs. Therefore, the recent development of machine learning models for CPI prediction was reviewed. Lastly, we envisioned prospects of combining TPP data with machine learning for CPI prediction, and the possibility of applying TPP to interpret toxicity pathways and phenotypes generated from multi-omics data, to inform future environmental toxicological research on forecasting targets and outcomes for emerging pollutants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寂寞的寄文完成签到,获得积分10
刚刚
科研通AI6应助三金采纳,获得10
刚刚
ding应助serendipity采纳,获得10
1秒前
吃西瓜皮完成签到,获得积分10
1秒前
渡劫完成签到,获得积分10
2秒前
2秒前
水123发布了新的文献求助10
2秒前
6秒前
Acer完成签到 ,获得积分10
6秒前
阿六儿完成签到,获得积分10
7秒前
共享精神应助栾玉采纳,获得10
7秒前
俊秀的莫茗关注了科研通微信公众号
8秒前
Ava应助rmbsLHC采纳,获得10
8秒前
怕黑捕发布了新的文献求助10
9秒前
粥粥粥发布了新的文献求助10
9秒前
10秒前
滕皓轩发布了新的文献求助10
11秒前
勤恳完成签到,获得积分10
11秒前
12秒前
zy发布了新的文献求助10
12秒前
Yun发布了新的文献求助30
12秒前
三金完成签到,获得积分10
13秒前
15秒前
威武好吐司完成签到 ,获得积分10
15秒前
rmbsLHC完成签到,获得积分10
15秒前
Morris完成签到,获得积分10
16秒前
勤劳夕阳发布了新的文献求助10
16秒前
17秒前
Ivy发布了新的文献求助10
18秒前
18秒前
chenchunlan96发布了新的文献求助10
18秒前
18秒前
落樱幻梦染星尘完成签到,获得积分10
19秒前
20秒前
情怀应助Muhebbet采纳,获得10
21秒前
坦率的怜容完成签到,获得积分10
21秒前
爱喝可乐发布了新的文献求助10
22秒前
23秒前
悦耳短靴发布了新的文献求助30
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603755
求助须知:如何正确求助?哪些是违规求助? 4688731
关于积分的说明 14855695
捐赠科研通 4694961
什么是DOI,文献DOI怎么找? 2540965
邀请新用户注册赠送积分活动 1507143
关于科研通互助平台的介绍 1471814