已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Thermal proteome profiling and machine learning modeling for dissecting chemical-protein interactions in environmental toxicology: A mini-review and perspectives

仿形(计算机编程) 蛋白质组 不良结局途径 污染物 计算生物学 生化工程 计算机科学 化学安全 化学 生物信息学 生物 生态学 工程类 操作系统
作者
Zimeng Wu,Zhiqiang Fu,Xiaomei Yu,Jingwen Chen
出处
期刊:Critical Reviews in Environmental Science and Technology [Taylor & Francis]
卷期号:54 (20): 1478-1500 被引量:1
标识
DOI:10.1080/10643389.2024.2320753
摘要

High throughput in vitro assays for screening chemical hazards focus primarily on specific receptors that are linked with certain adverse outcome pathways, neglecting potential novel endpoints or pathways induced by emerging pollutants. Identifying target proteins that interact with pollutants contributes to finding potential molecular initiating events under the adverse outcome pathways framework. Mass spectrometry-based thermal proteome profiling (TPP) assays have permitted uncovering binding targets of pollutants across the whole proteome. Based on the principle that proteins are thermally stabilized after binding with chemicals, TPP differentiates protein targets by determining the soluble fraction of proteins that remain stable after heat stress. Thus, TPP facilitates qualitative and quantitative measurements of chemical-protein interactions (CPIs) without modifications on chemical structures or immobilization of target proteins. In this mini-review, we introduced the principles, development and procedures of TPP, and summarized its applications in identifying protein targets and speculating toxicity pathways for emerging pollutants in environmental toxicological studies. Additionally, since measurements of CPIs using TPP for multiple chemicals could be labor- and cost-intensive, machine learning-based modeling is a feasible alternative to dissect CPIs due to its capability to mine intrinsic properties determining CPIs. Therefore, the recent development of machine learning models for CPI prediction was reviewed. Lastly, we envisioned prospects of combining TPP data with machine learning for CPI prediction, and the possibility of applying TPP to interpret toxicity pathways and phenotypes generated from multi-omics data, to inform future environmental toxicological research on forecasting targets and outcomes for emerging pollutants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
木子弓长发布了新的文献求助10
2秒前
Jasper应助厘米采纳,获得10
4秒前
悦耳易烟完成签到,获得积分20
4秒前
6秒前
上官若男应助贺兰采纳,获得10
7秒前
三斤橙子发布了新的文献求助10
7秒前
sakiko完成签到,获得积分10
8秒前
8秒前
可爱的函函应助shinn采纳,获得10
11秒前
好好好发布了新的文献求助10
12秒前
334niubi666完成签到 ,获得积分10
16秒前
哈比人linling完成签到 ,获得积分10
18秒前
19秒前
学fei了吗完成签到 ,获得积分10
21秒前
邓秀君完成签到,获得积分10
24秒前
悦耳易烟发布了新的文献求助10
24秒前
993494543完成签到,获得积分10
26秒前
26秒前
28秒前
lelouchhail关注了科研通微信公众号
28秒前
29秒前
星辰大海应助shinn采纳,获得10
29秒前
坚强的安柏完成签到,获得积分10
30秒前
大个应助科研通管家采纳,获得10
31秒前
Orange应助科研通管家采纳,获得10
31秒前
31秒前
31秒前
贺兰发布了新的文献求助10
31秒前
34秒前
hy1234完成签到 ,获得积分10
35秒前
清爽的千柔完成签到 ,获得积分10
35秒前
Hello应助可靠的寒风采纳,获得10
36秒前
36秒前
快乐梦菡发布了新的文献求助10
38秒前
111完成签到,获得积分10
39秒前
清爽的千柔关注了科研通微信公众号
40秒前
40秒前
41秒前
shinn发布了新的文献求助10
41秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968110
求助须知:如何正确求助?哪些是违规求助? 3513080
关于积分的说明 11166497
捐赠科研通 3248293
什么是DOI,文献DOI怎么找? 1794178
邀请新用户注册赠送积分活动 874903
科研通“疑难数据库(出版商)”最低求助积分说明 804629