Thermal proteome profiling and machine learning modeling for dissecting chemical-protein interactions in environmental toxicology: A mini-review and perspectives

仿形(计算机编程) 蛋白质组 不良结局途径 污染物 计算生物学 生化工程 计算机科学 化学安全 化学 生物信息学 生物 生态学 工程类 操作系统
作者
Zimeng Wu,Zhiqiang Fu,Xiaomei Yu,Jingwen Chen
出处
期刊:Critical Reviews in Environmental Science and Technology [Taylor & Francis]
卷期号:54 (20): 1478-1500 被引量:1
标识
DOI:10.1080/10643389.2024.2320753
摘要

High throughput in vitro assays for screening chemical hazards focus primarily on specific receptors that are linked with certain adverse outcome pathways, neglecting potential novel endpoints or pathways induced by emerging pollutants. Identifying target proteins that interact with pollutants contributes to finding potential molecular initiating events under the adverse outcome pathways framework. Mass spectrometry-based thermal proteome profiling (TPP) assays have permitted uncovering binding targets of pollutants across the whole proteome. Based on the principle that proteins are thermally stabilized after binding with chemicals, TPP differentiates protein targets by determining the soluble fraction of proteins that remain stable after heat stress. Thus, TPP facilitates qualitative and quantitative measurements of chemical-protein interactions (CPIs) without modifications on chemical structures or immobilization of target proteins. In this mini-review, we introduced the principles, development and procedures of TPP, and summarized its applications in identifying protein targets and speculating toxicity pathways for emerging pollutants in environmental toxicological studies. Additionally, since measurements of CPIs using TPP for multiple chemicals could be labor- and cost-intensive, machine learning-based modeling is a feasible alternative to dissect CPIs due to its capability to mine intrinsic properties determining CPIs. Therefore, the recent development of machine learning models for CPI prediction was reviewed. Lastly, we envisioned prospects of combining TPP data with machine learning for CPI prediction, and the possibility of applying TPP to interpret toxicity pathways and phenotypes generated from multi-omics data, to inform future environmental toxicological research on forecasting targets and outcomes for emerging pollutants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
JamesPei应助wzj采纳,获得10
1秒前
hua发布了新的文献求助10
1秒前
RL发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
3秒前
3秒前
zxcvvbnm完成签到 ,获得积分10
3秒前
野原x之助发布了新的文献求助10
4秒前
adeno发布了新的文献求助10
4秒前
5秒前
kyJYbs发布了新的文献求助10
5秒前
赘婿应助mdmdd采纳,获得10
6秒前
6秒前
js110完成签到,获得积分20
6秒前
6秒前
光崽是谁完成签到,获得积分10
7秒前
YJL发布了新的文献求助200
7秒前
zzzyyyppp发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助150
8秒前
JamesPei应助木瓜木瓜采纳,获得10
9秒前
柳月萍发布了新的文献求助10
9秒前
xxxxc完成签到,获得积分10
9秒前
Velvet完成签到,获得积分10
10秒前
张恒发布了新的文献求助10
10秒前
完美世界应助活力的兔子采纳,获得10
10秒前
10秒前
song发布了新的文献求助10
10秒前
12秒前
情怀应助卡哇伊骨头采纳,获得10
13秒前
13秒前
郝文彩完成签到,获得积分10
14秒前
14秒前
15秒前
只谈风月举报仙女求助涉嫌违规
15秒前
科研通AI6应助RL采纳,获得30
16秒前
叶嘉琪完成签到,获得积分10
16秒前
ding应助典雅胜采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4933690
求助须知:如何正确求助?哪些是违规求助? 4201746
关于积分的说明 13054958
捐赠科研通 3975817
什么是DOI,文献DOI怎么找? 2178602
邀请新用户注册赠送积分活动 1194932
关于科研通互助平台的介绍 1106316