Thermal proteome profiling and machine learning modeling for dissecting chemical-protein interactions in environmental toxicology: A mini-review and perspectives

仿形(计算机编程) 蛋白质组 不良结局途径 污染物 计算生物学 生化工程 计算机科学 化学安全 化学 生物信息学 生物 生态学 工程类 操作系统
作者
Zimeng Wu,Zhiqiang Fu,Xiaomei Yu,Jingwen Chen
出处
期刊:Critical Reviews in Environmental Science and Technology [Informa]
卷期号:54 (20): 1478-1500 被引量:1
标识
DOI:10.1080/10643389.2024.2320753
摘要

High throughput in vitro assays for screening chemical hazards focus primarily on specific receptors that are linked with certain adverse outcome pathways, neglecting potential novel endpoints or pathways induced by emerging pollutants. Identifying target proteins that interact with pollutants contributes to finding potential molecular initiating events under the adverse outcome pathways framework. Mass spectrometry-based thermal proteome profiling (TPP) assays have permitted uncovering binding targets of pollutants across the whole proteome. Based on the principle that proteins are thermally stabilized after binding with chemicals, TPP differentiates protein targets by determining the soluble fraction of proteins that remain stable after heat stress. Thus, TPP facilitates qualitative and quantitative measurements of chemical-protein interactions (CPIs) without modifications on chemical structures or immobilization of target proteins. In this mini-review, we introduced the principles, development and procedures of TPP, and summarized its applications in identifying protein targets and speculating toxicity pathways for emerging pollutants in environmental toxicological studies. Additionally, since measurements of CPIs using TPP for multiple chemicals could be labor- and cost-intensive, machine learning-based modeling is a feasible alternative to dissect CPIs due to its capability to mine intrinsic properties determining CPIs. Therefore, the recent development of machine learning models for CPI prediction was reviewed. Lastly, we envisioned prospects of combining TPP data with machine learning for CPI prediction, and the possibility of applying TPP to interpret toxicity pathways and phenotypes generated from multi-omics data, to inform future environmental toxicological research on forecasting targets and outcomes for emerging pollutants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wyk发布了新的文献求助10
刚刚
科研通AI6应助XIN采纳,获得10
1秒前
刘娇娇发布了新的文献求助10
1秒前
1秒前
Ava应助起名困难户采纳,获得10
1秒前
Aoops完成签到,获得积分10
2秒前
ll发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
呵呵呵呵发布了新的文献求助10
3秒前
流也完成签到,获得积分10
4秒前
wh发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
星辰大海应助OK采纳,获得10
5秒前
5秒前
ninico完成签到,获得积分10
6秒前
11发布了新的文献求助10
6秒前
顾矜应助吕喜梅采纳,获得10
6秒前
彩色碧菡完成签到,获得积分10
6秒前
颖火虫发布了新的文献求助10
7秒前
zq完成签到,获得积分10
7秒前
舒适的初雪完成签到,获得积分10
7秒前
欧科狗完成签到,获得积分10
7秒前
qaqfdmmj发布了新的文献求助10
8秒前
Baize完成签到,获得积分10
8秒前
9秒前
科研通AI6应助hhc采纳,获得10
9秒前
9秒前
任性映秋发布了新的文献求助10
9秒前
走四方发布了新的文献求助20
9秒前
10秒前
刘娇娇完成签到,获得积分10
11秒前
ytzhang0587给SV的求助进行了留言
11秒前
未来科研大佬完成签到,获得积分20
11秒前
QQ完成签到 ,获得积分10
11秒前
11秒前
1911988020发布了新的文献求助10
11秒前
12秒前
最爱吃芒果完成签到,获得积分10
12秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615047
求助须知:如何正确求助?哪些是违规求助? 4699915
关于积分的说明 14905878
捐赠科研通 4740995
什么是DOI,文献DOI怎么找? 2547893
邀请新用户注册赠送积分活动 1511680
关于科研通互助平台的介绍 1473726