亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Thermal proteome profiling and machine learning modeling for dissecting chemical-protein interactions in environmental toxicology: A mini-review and perspectives

仿形(计算机编程) 蛋白质组 不良结局途径 污染物 计算生物学 生化工程 计算机科学 化学安全 化学 生物信息学 生物 生态学 工程类 操作系统
作者
Zimeng Wu,Zhiqiang Fu,Xiaomei Yu,Jingwen Chen
出处
期刊:Critical Reviews in Environmental Science and Technology [Informa]
卷期号:54 (20): 1478-1500 被引量:1
标识
DOI:10.1080/10643389.2024.2320753
摘要

High throughput in vitro assays for screening chemical hazards focus primarily on specific receptors that are linked with certain adverse outcome pathways, neglecting potential novel endpoints or pathways induced by emerging pollutants. Identifying target proteins that interact with pollutants contributes to finding potential molecular initiating events under the adverse outcome pathways framework. Mass spectrometry-based thermal proteome profiling (TPP) assays have permitted uncovering binding targets of pollutants across the whole proteome. Based on the principle that proteins are thermally stabilized after binding with chemicals, TPP differentiates protein targets by determining the soluble fraction of proteins that remain stable after heat stress. Thus, TPP facilitates qualitative and quantitative measurements of chemical-protein interactions (CPIs) without modifications on chemical structures or immobilization of target proteins. In this mini-review, we introduced the principles, development and procedures of TPP, and summarized its applications in identifying protein targets and speculating toxicity pathways for emerging pollutants in environmental toxicological studies. Additionally, since measurements of CPIs using TPP for multiple chemicals could be labor- and cost-intensive, machine learning-based modeling is a feasible alternative to dissect CPIs due to its capability to mine intrinsic properties determining CPIs. Therefore, the recent development of machine learning models for CPI prediction was reviewed. Lastly, we envisioned prospects of combining TPP data with machine learning for CPI prediction, and the possibility of applying TPP to interpret toxicity pathways and phenotypes generated from multi-omics data, to inform future environmental toxicological research on forecasting targets and outcomes for emerging pollutants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
风起_发布了新的文献求助10
7秒前
科目三应助科研通管家采纳,获得10
26秒前
shhoing应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
shhoing应助科研通管家采纳,获得10
26秒前
坦率的语芙完成签到,获得积分10
29秒前
39秒前
BowieHuang应助大鸟依人采纳,获得10
39秒前
44秒前
嘟嘟嘟嘟发布了新的文献求助30
47秒前
风起_完成签到 ,获得积分10
1分钟前
健壮的鑫鹏完成签到,获得积分10
1分钟前
江夏清完成签到,获得积分10
1分钟前
调皮千兰发布了新的文献求助10
1分钟前
积极凌兰完成签到 ,获得积分10
1分钟前
Willow完成签到,获得积分10
1分钟前
调皮千兰发布了新的文献求助10
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
sunfield2014发布了新的文献求助10
2分钟前
2分钟前
3分钟前
天天快乐应助sunfield2014采纳,获得10
3分钟前
天天快乐应助sunfield2014采纳,获得10
3分钟前
烟花应助sunfield2014采纳,获得10
3分钟前
李健应助sunfield2014采纳,获得10
3分钟前
在水一方应助sunfield2014采纳,获得10
3分钟前
斯文败类应助sunfield2014采纳,获得30
3分钟前
脑洞疼应助sunfield2014采纳,获得10
3分钟前
打打应助sunfield2014采纳,获得10
3分钟前
小二郎应助sunfield2014采纳,获得10
3分钟前
大个应助sunfield2014采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
一道光发布了新的文献求助30
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561466
求助须知:如何正确求助?哪些是违规求助? 4646576
关于积分的说明 14678674
捐赠科研通 4587855
什么是DOI,文献DOI怎么找? 2517242
邀请新用户注册赠送积分活动 1490539
关于科研通互助平台的介绍 1461500