SUGAR: Spherical ultrafast graph attention framework for cortical surface registration

人工智能 计算机科学 图像配准 失真(音乐) 深度学习 图形 相似性(几何) 特征学习 机器学习 计算机视觉 算法 理论计算机科学 图像(数学) 放大器 计算机网络 带宽(计算)
作者
Jianxun Ren,Ning An,Youjia Zhang,Danyang Wang,Zhenyu Sun,Lin Cong,Weigang Cui,Weiwei Wang,Ying Zhou,Wei Zhang,Qingyu Hu,Ping Zhang,Dan Hu,Danhong Wang,Hesheng Liu
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:94: 103122-103122 被引量:2
标识
DOI:10.1016/j.media.2024.103122
摘要

Cortical surface registration plays a crucial role in aligning cortical functional and anatomical features across individuals. However, conventional registration algorithms are computationally inefficient. Recently, learning-based registration algorithms have emerged as a promising solution, significantly improving processing efficiency. Nonetheless, there remains a gap in the development of a learning-based method that exceeds the state-of-the-art conventional methods simultaneously in computational efficiency, registration accuracy, and distortion control, despite the theoretically greater representational capabilities of deep learning approaches. To address the challenge, we present SUGAR, a unified unsupervised deep-learning framework for both rigid and non-rigid registration. SUGAR incorporates a U-Net-based spherical graph attention network and leverages the Euler angle representation for deformation. In addition to the similarity loss, we introduce fold and multiple distortion losses to preserve topology and minimize various types of distortions. Furthermore, we propose a data augmentation strategy specifically tailored for spherical surface registration to enhance the registration performance. Through extensive evaluation involving over 10,000 scans from 7 diverse datasets, we showed that our framework exhibits comparable or superior registration performance in accuracy, distortion, and test-retest reliability compared to conventional and learning-based methods. Additionally, SUGAR achieves remarkable sub-second processing times, offering a notable speed-up of approximately 12,000 times in registering 9,000 subjects from the UK Biobank dataset in just 32 min. This combination of high registration performance and accelerated processing time may greatly benefit large-scale neuroimaging studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无名老大应助shi0331采纳,获得30
1秒前
sunhao完成签到,获得积分10
1秒前
1秒前
朵拉发布了新的文献求助10
2秒前
sunhao发布了新的文献求助10
4秒前
4秒前
GZX发布了新的文献求助10
4秒前
5秒前
三冬四夏发布了新的文献求助10
6秒前
清客完成签到 ,获得积分10
8秒前
在水一方应助健壮的访曼采纳,获得10
8秒前
nenoaowu发布了新的文献求助10
9秒前
受伤归尘发布了新的文献求助10
9秒前
holi完成签到 ,获得积分10
11秒前
11秒前
12秒前
13秒前
xiaoxin完成签到,获得积分20
13秒前
缓慢冬天发布了新的文献求助10
14秒前
biubiufan完成签到,获得积分10
14秒前
cleff发布了新的文献求助10
15秒前
JamesPei应助朵拉采纳,获得10
16秒前
24秒前
77完成签到,获得积分10
26秒前
冷酷的松思完成签到,获得积分10
26秒前
小黑应助你帅你有理采纳,获得30
28秒前
念之完成签到 ,获得积分10
28秒前
大模型应助nenoaowu采纳,获得10
29秒前
33秒前
34秒前
王紫完成签到,获得积分10
34秒前
77发布了新的文献求助10
36秒前
39秒前
完美世界应助mia005采纳,获得10
40秒前
iNk应助Wang采纳,获得10
42秒前
清图完成签到,获得积分10
43秒前
半柚应助阿司匹林采纳,获得10
43秒前
44秒前
44秒前
44秒前
高分求助中
Востребованный временем 2500
The Restraining Hand: Captivity for Christ in China 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Encyclopedia of Mental Health Reference Work 300
脑血管病 300
The Unity of the Common Law 300
Teaching Essential Units of Language 200
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3372153
求助须知:如何正确求助?哪些是违规求助? 2990056
关于积分的说明 8738494
捐赠科研通 2673384
什么是DOI,文献DOI怎么找? 1464426
科研通“疑难数据库(出版商)”最低求助积分说明 677527
邀请新用户注册赠送积分活动 668912