Edge aware depth inference for large-scale aerial building multi-view stereo

计算机科学 GSM演进的增强数据速率 人工智能 深度图 基本事实 推论 计算机视觉 深度学习 边缘检测 体积热力学 图像处理 图像(数学) 量子力学 物理
作者
Song Zhang,Zhiwei Wei,Wenjia Xu,Lili Zhang,Yang Wang,Jinming Zhang,Junyi Liu
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:207: 27-42
标识
DOI:10.1016/j.isprsjprs.2023.11.020
摘要

Aerial building depth estimation is a crucial task in 3D digital urban reconstruction and learning-based multi-view stereo (MVS) methods have recently shown promising results in this field. However, these methods are mainly developed by modifying the general learning-based MVS framework for aerial depth estimation, which lack consideration about the intrinsic structures of buildings and result in insufficient accuracy. Therefore, we propose an end-to-end edge aware depth inference network for large-scale aerial building multi-views stereo, called EG-MVSNet, which incorporates the building edge information and jointly estimate the depth map and edge map. Firstly, we propose a novel Edge-Sensitive Network based on the differentiable Dynamic Sobel Kernels to obtain reliable building edge features while eliminating other irrelevant features. We further propose an UNet-like Edge Prediction Branch and a Building Edge-Depth Loss to constrain the model focus primarily on the building edge features. Notably, the pseudo ground truth (GT) edge map for each aerial image is obtained with classical gradient operators which do not require additional annotation. Secondly, to incorporate the edge features into the depth prediction module, we introduce an Inter-volume Adaptive Fusion Module that adaptively incorporates the edge features volume into a standard cost volume and guides the regularization of the cost volume. An Edge Depth Refinement Module is further proposed to performs 2D-guidance refinement and avoid over-smoothed or blurred depth boundaries. Extensive experiments on the WHU dataset and LuoJia-MVS dataset show that our model significantly outperforms state-of-the-art performance by more than 22% mean absolute error (MAE) compared to RED-Net and 57% MAE compared to MVSNet. Additionally, to validate our proposed model, we reconstruct a synthetic aerial building benchmark based on WHU dataset. The results as far as correctness and accuracy exceeded the results of other MVS methods in a between-method comparison by at least 12% in MAE metric. The dataset and code can be available at https://github.com/zs670980918/EG-MVSNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清爽灰狼发布了新的文献求助10
刚刚
刚刚
小军完成签到,获得积分10
刚刚
刚刚
cq220发布了新的文献求助10
刚刚
sky完成签到 ,获得积分10
刚刚
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得30
1秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
从容芮应助iNk采纳,获得50
2秒前
萧水白应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得80
2秒前
3秒前
小鱼儿发布了新的文献求助10
3秒前
123发布了新的文献求助10
6秒前
6秒前
Apr9810h发布了新的文献求助10
6秒前
lisa发布了新的文献求助10
7秒前
8秒前
小吕完成签到,获得积分10
9秒前
9秒前
三花花花完成签到,获得积分10
10秒前
123完成签到,获得积分20
11秒前
JamesPei应助steveshu采纳,获得10
12秒前
甜甜玫瑰应助雪中采纳,获得10
14秒前
15秒前
16秒前
谭显芝发布了新的文献求助10
16秒前
hyx完成签到 ,获得积分10
17秒前
芈钥完成签到 ,获得积分10
18秒前
18秒前
来了来了完成签到,获得积分10
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150268
求助须知:如何正确求助?哪些是违规求助? 2801406
关于积分的说明 7844576
捐赠科研通 2458893
什么是DOI,文献DOI怎么找? 1308793
科研通“疑难数据库(出版商)”最低求助积分说明 628566
版权声明 601721