有机发光二极管
共轭体系
兴奋剂
工作职能
佩多:嘘
能量转换效率
光电子学
材料科学
电导率
噻吩
有机太阳能电池
化学工程
纳米技术
工程类
聚合物
有机化学
化学
复合材料
物理化学
图层(电子)
作者
Qingyang Li,Shuyan Liu,He Wang,Zhe Li,Yuzhuo Zhang,Bowei Xu
出处
期刊:Solar RRL
[Wiley]
日期:2024-03-08
卷期号:8 (10)
标识
DOI:10.1002/solr.202400058
摘要
The existing deficiencies in traditional hole‐transporting layer (HTL) materials poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and molybdenum oxide restrict the further advance in the photoelectric conversion efficiency of organic photoelectric devices. Although conjugated polyelectrolytes (CPEs) display great advantage in serving as HTLs, the low work function (WF) and poor conductivity lead to the inferior performances of CPE‐modified devices. Herein, the important influence of electrostatic potential on p‐doping property of CPEs is revealed, and hence a series of CPEs with obvious p‐type self‐doping property based on simple chemical structures of benzene and thiophene derivatives are designed and synthesized. With a higher electron density of conjugated backbone, the CPE PB3T shows an improved doping effect. Moreover, a simultaneous enhancement of WF and conductivity can be achieved by doping the CPE with polyoxometalate (POM). The resulting CPE composite PB3T:POM exhibits good hole injection/collection ability and is compatible with large‐area production technique. The organic solar cells with active areas of 0.04 and 1.00 cm 2 exhibit power conversion efficiency values of 18.1% and 15.6%, respectively. PB3T:POM is also used as HTL to fabricate organic light‐emitting diode (OLED) device, and the OLED exhibits a superior luminous efficiency to the PEDOT:PSS device but with a significantly reduced turn‐on voltage from 4.2 to 3.4 V.
科研通智能强力驱动
Strongly Powered by AbleSci AI