Metal-organic framework-derived self-grown core-shell V2O5 for high-performance zinc ion storage

壳体(结构) 离子 金属 材料科学 芯(光纤) 金属有机骨架 无机化学 化学 冶金 复合材料 有机化学 吸附
作者
Kunyu Hao,Zhuwei Sheng,Mingyue Chen,Yu Lu,Pengcheng Qi,Gaofu Liu,Hao Wu,Yiwen Tang
出处
期刊:Electrochimica Acta [Elsevier]
卷期号:475: 143641-143641 被引量:4
标识
DOI:10.1016/j.electacta.2023.143641
摘要

The nanostructure designing strategy is one of the most effective methods to carry out the optimization of cathode materials for aqueous zinc ion batteries (ARZIBs). The design and synthesis of materials with stable nanostructure and short ion/electron transport paths are expected to alleviate the dilemma faced by vanadium-based materials, such as poor electrical conductivity and structural changes. Ostwald ripening is a promising option in the design and fabrication of special nanostructures such as hollow and core shells. Selecting vanadium-based metal-organic frameworks (V-MOF) as reactants, we successfully obtained vanadium oxide precursors with self-growing core-shell structures in one-step. As the reaction time increases, the vanadium oxide precursors undergo the process of microspheres → core-shell → yolk shell, which is thought to be the result of Ostwald ripening. After annealing, the vanadium oxide precursor becomes a "core-shell" structure vanadium pentoxide (core-shell V2O5). The ARZIBs assembled with core-shell V2O5 cathodes showed superior capacity (309.4 mAh/g at 0.1 A/g) and cycling stability (91.4 % capacity retention after 4000 cycles at 3A/g). Hence, we successfully realized the self-growth of vanadium oxide with core-shell structure in one step but also revealed the crystallization process based on Ostwald ripening and its zinc storage mechanism, which provides new possibilities for the facile synthesis of special nanostructured ARZIB cathode materials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨阳完成签到,获得积分10
刚刚
何hh发布了新的文献求助10
刚刚
小蘑菇应助konglingjie采纳,获得10
1秒前
wyy发布了新的文献求助10
1秒前
江山发布了新的文献求助10
1秒前
Liana_Liu完成签到,获得积分10
1秒前
xiaoyu发布了新的文献求助10
1秒前
lanlan发布了新的文献求助10
1秒前
吴彦祖完成签到,获得积分10
2秒前
2秒前
爆米花应助哈哈哈哈采纳,获得10
2秒前
典雅的靖仇完成签到,获得积分20
2秒前
2秒前
kk完成签到,获得积分10
3秒前
上官若男应助自知则知之采纳,获得10
3秒前
3秒前
蛋黄完成签到,获得积分10
3秒前
3秒前
4秒前
张嘉元驳回了wan应助
4秒前
科研通AI6应助gaga采纳,获得10
4秒前
汉堡包应助潇洒台灯采纳,获得10
4秒前
4秒前
4秒前
科研通AI6应助huhdcid采纳,获得10
5秒前
科研通AI6应助cL采纳,获得30
5秒前
5秒前
韩梦兮完成签到,获得积分10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
玄风应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
wyy完成签到,获得积分20
6秒前
科目三应助科研通管家采纳,获得10
6秒前
玄风应助科研通管家采纳,获得10
6秒前
快乐丸子完成签到,获得积分10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505852
求助须知:如何正确求助?哪些是违规求助? 4601404
关于积分的说明 14476173
捐赠科研通 4535332
什么是DOI,文献DOI怎么找? 2485305
邀请新用户注册赠送积分活动 1468307
关于科研通互助平台的介绍 1440779