Metal-organic framework-derived self-grown core-shell V2O5 for high-performance zinc ion storage

壳体(结构) 离子 金属 材料科学 芯(光纤) 金属有机骨架 无机化学 化学 冶金 复合材料 有机化学 吸附
作者
Kunyu Hao,Zhuwei Sheng,Mingyue Chen,Yu Lu,Pengcheng Qi,Gaofu Liu,Hao Wu,Yiwen Tang
出处
期刊:Electrochimica Acta [Elsevier]
卷期号:475: 143641-143641 被引量:2
标识
DOI:10.1016/j.electacta.2023.143641
摘要

The nanostructure designing strategy is one of the most effective methods to carry out the optimization of cathode materials for aqueous zinc ion batteries (ARZIBs). The design and synthesis of materials with stable nanostructure and short ion/electron transport paths are expected to alleviate the dilemma faced by vanadium-based materials, such as poor electrical conductivity and structural changes. Ostwald ripening is a promising option in the design and fabrication of special nanostructures such as hollow and core shells. Selecting vanadium-based metal-organic frameworks (V-MOF) as reactants, we successfully obtained vanadium oxide precursors with self-growing core-shell structures in one-step. As the reaction time increases, the vanadium oxide precursors undergo the process of microspheres → core-shell → yolk shell, which is thought to be the result of Ostwald ripening. After annealing, the vanadium oxide precursor becomes a "core-shell" structure vanadium pentoxide (core-shell V2O5). The ARZIBs assembled with core-shell V2O5 cathodes showed superior capacity (309.4 mAh/g at 0.1 A/g) and cycling stability (91.4 % capacity retention after 4000 cycles at 3A/g). Hence, we successfully realized the self-growth of vanadium oxide with core-shell structure in one step but also revealed the crystallization process based on Ostwald ripening and its zinc storage mechanism, which provides new possibilities for the facile synthesis of special nanostructured ARZIB cathode materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助幸福胡萝卜采纳,获得10
1秒前
积极晓兰完成签到,获得积分10
1秒前
1秒前
离子电池完成签到,获得积分10
1秒前
小熊饼干完成签到,获得积分10
1秒前
Ryuichi完成签到 ,获得积分10
2秒前
冷静的平安完成签到,获得积分20
2秒前
周士乐完成签到,获得积分10
2秒前
juan完成签到,获得积分10
3秒前
cheeselemon182完成签到,获得积分10
3秒前
英勇凝旋完成签到,获得积分10
4秒前
HopeStar发布了新的文献求助10
4秒前
4秒前
石幻枫完成签到 ,获得积分10
5秒前
生动盼秋发布了新的文献求助10
5秒前
韭黄发布了新的文献求助10
5秒前
Eliauk完成签到,获得积分10
6秒前
小野狼完成签到,获得积分10
6秒前
威武诺言完成签到,获得积分10
6秒前
fengye发布了新的文献求助10
6秒前
李东东完成签到 ,获得积分10
6秒前
Zn应助hulin_zjxu采纳,获得10
6秒前
海鸥海鸥发布了新的文献求助50
7秒前
小乔要努力变强完成签到,获得积分10
7秒前
YANG完成签到 ,获得积分10
7秒前
7秒前
在水一方应助马保国123采纳,获得10
7秒前
Jovid完成签到,获得积分10
8秒前
建成完成签到,获得积分10
8秒前
爆米花应助落落采纳,获得10
8秒前
852应助liu123479采纳,获得20
9秒前
9秒前
无情念之发布了新的文献求助10
9秒前
lilac应助Rocky采纳,获得10
9秒前
9秒前
深情安青应助OYE采纳,获得10
10秒前
10秒前
李爱国应助热情的阿猫桑采纳,获得10
10秒前
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759