地质学
地下室
构造盆地
反演(地质)
沉积盆地
白垩纪
地震反演
沉积岩
重力异常
岩石学
地球物理学
地貌学
地震学
古生物学
油田
几何学
工程类
土木工程
方位角
数学
作者
Rui Wang,Zhengwei Xu,Carlo G. Lai,Xuben Wang,Michael S. Zhdanov,Guowei Li,Ziyong Cheng,Jun Li,Guoling Zhao,Shiming Liang,Hua Li,Yuxin Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing
[Institute of Electrical and Electronics Engineers]
日期:2024-01-01
卷期号:62: 1-11
标识
DOI:10.1109/tgrs.2023.3340523
摘要
The stark contrast in density between geological layers is a fundamental aspect in the examination of basic geological structures. The delineation between the crystalline basement and sedimentary layers, moreover, is pivotal in the pursuit of strategic energy resources, such as petroleum and natural gas. Traditional full space density inversion, however, is beleaguered by issues of stability and resolution, impeding the accurate characterization of the sharp density interface. To rectify these shortcomings, we introduce an innovative methodology for estimating two-dimensional depth-to-basement and overlying density distribution, employing a deep neural network with a Leaky Rectified Linear Unit as an activation function. Evaluation of the proposed method on simulated sedimentary basin models underscores its superior ability to discern complex geometries of basin boundaries and overlying density, despite the presence of various degrees of Gaussian noise. In practical application to the Poyang basin, the relief of the Cretaceous basement is proficiently recovered through vertical gravity field data, with validation provided by corresponding seismic sections and well-established stratigraphic markers.
科研通智能强力驱动
Strongly Powered by AbleSci AI