Generating bulk RNA-Seq gene expression data based on generative deep learning models and utilizing it for data augmentation

计算机科学 生成模型 人工智能 数据挖掘 预处理器 机器学习 可靠性(半导体) 相似性(几何) 样品(材料) 生成语法 吞吐量 物理 图像(数学) 电信 功率(物理) 量子力学 化学 色谱法 无线
作者
Yinglun Wang,Qiurui Chen,Hongwei Shao,Rongxin Zhang,Han Shen
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:169: 107828-107828 被引量:6
标识
DOI:10.1016/j.compbiomed.2023.107828
摘要

Large-scale high-throughput transcriptome sequencing data holds significant value in biomedical research. However, practical challenges such as difficulty in sample acquisition often limit the availability of large sample sizes, leading to decreased reliability of the analysis results. In practice, generative deep learning models, such as Generative Adversarial Networks (GANs) and Diffusion Models (DMs), have been proven to generate realistic data and may be used to solve this promblem. In this study, we utilized bulk RNA-Seq gene expression data to construct different generative models with two data preprocessing methods: Min-Max-GAN, Z-Score-GAN, Min-Max-DM, and Z-Score-DM. We demonstrated that the generated data from the Min-Max-GAN model exhibited high similarity to real data, surpassing the performance of the other models significantly. Furthermore, we trained the models on the largest dataset available to date, achieving MMD (Maximum Mean Discrepancy) of 0.030 and 0.033 on the training and independent datasets, respectively. Through SHAP (SHapley Additive exPlanations) explanations of our generative model, we also enhanced our model's credibility. Finally, we applied the generated data to data augmentation and observed a significant improvement in the performance of classification models. In summary, this study establishes a GAN-based approach for generating bulk RNA-Seq gene expression data, which contributes to enhancing the performance and reliability of downstream tasks in high-throughput transcriptome analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zero完成签到,获得积分10
2秒前
4秒前
JPH1990完成签到,获得积分10
4秒前
喵喵发布了新的文献求助10
5秒前
6秒前
迅速的幻雪完成签到 ,获得积分10
6秒前
Yang完成签到,获得积分10
7秒前
生动夏青发布了新的文献求助10
8秒前
伊伊完成签到,获得积分10
10秒前
在水一方应助科研通管家采纳,获得10
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
今后应助科研通管家采纳,获得10
11秒前
wysy应助科研通管家采纳,获得10
11秒前
kedaya应助科研通管家采纳,获得20
11秒前
lll应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
12秒前
科目三应助科研通管家采纳,获得10
12秒前
wy.he应助居山君的孢子采纳,获得20
12秒前
14秒前
进击的书包完成签到,获得积分20
14秒前
14秒前
文静的人雄完成签到,获得积分10
16秒前
小鱼儿发布了新的文献求助10
17秒前
19秒前
Coral369发布了新的文献求助10
22秒前
竹筏过海应助七月流火采纳,获得100
22秒前
23秒前
Hony132完成签到,获得积分10
25秒前
敏宝发布了新的文献求助10
25秒前
yolo完成签到,获得积分10
25秒前
救赎完成签到,获得积分20
26秒前
Shark完成签到 ,获得积分10
26秒前
Orange应助华青ww采纳,获得10
30秒前
31秒前
31秒前
乐乐应助ZJH采纳,获得10
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966324
求助须知:如何正确求助?哪些是违规求助? 3511753
关于积分的说明 11159467
捐赠科研通 3246341
什么是DOI,文献DOI怎么找? 1793389
邀请新用户注册赠送积分活动 874417
科研通“疑难数据库(出版商)”最低求助积分说明 804357