Generating bulk RNA-Seq gene expression data based on generative deep learning models and utilizing it for data augmentation

计算机科学 生成模型 人工智能 数据挖掘 预处理器 机器学习 可靠性(半导体) 相似性(几何) 样品(材料) 生成语法 吞吐量 物理 图像(数学) 电信 功率(物理) 量子力学 化学 色谱法 无线
作者
Yinglun Wang,Qiurui Chen,Hongwei Shao,Rongxin Zhang,Han Shen
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:169: 107828-107828 被引量:9
标识
DOI:10.1016/j.compbiomed.2023.107828
摘要

Large-scale high-throughput transcriptome sequencing data holds significant value in biomedical research. However, practical challenges such as difficulty in sample acquisition often limit the availability of large sample sizes, leading to decreased reliability of the analysis results. In practice, generative deep learning models, such as Generative Adversarial Networks (GANs) and Diffusion Models (DMs), have been proven to generate realistic data and may be used to solve this promblem. In this study, we utilized bulk RNA-Seq gene expression data to construct different generative models with two data preprocessing methods: Min-Max-GAN, Z-Score-GAN, Min-Max-DM, and Z-Score-DM. We demonstrated that the generated data from the Min-Max-GAN model exhibited high similarity to real data, surpassing the performance of the other models significantly. Furthermore, we trained the models on the largest dataset available to date, achieving MMD (Maximum Mean Discrepancy) of 0.030 and 0.033 on the training and independent datasets, respectively. Through SHAP (SHapley Additive exPlanations) explanations of our generative model, we also enhanced our model's credibility. Finally, we applied the generated data to data augmentation and observed a significant improvement in the performance of classification models. In summary, this study establishes a GAN-based approach for generating bulk RNA-Seq gene expression data, which contributes to enhancing the performance and reliability of downstream tasks in high-throughput transcriptome analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助科研通管家采纳,获得10
刚刚
共享精神应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
1秒前
选波发布了新的文献求助10
1秒前
2秒前
2秒前
Ava应助霸道恒天采纳,获得10
2秒前
科研通AI6应助霸道恒天采纳,获得10
2秒前
传奇3应助霸道恒天采纳,获得10
2秒前
科研通AI6应助霸道恒天采纳,获得10
2秒前
Lucas应助霸道恒天采纳,获得10
2秒前
CipherSage应助霸道恒天采纳,获得10
3秒前
慕青应助霸道恒天采纳,获得10
3秒前
赘婿应助霸道恒天采纳,获得10
3秒前
英姑应助霸道恒天采纳,获得10
3秒前
延胡索发布了新的文献求助10
3秒前
3秒前
kckckckckc完成签到 ,获得积分10
4秒前
Owen应助忧郁寻冬采纳,获得10
5秒前
热心玉兰发布了新的文献求助10
6秒前
割牙龈肉发布了新的文献求助10
7秒前
李李李发布了新的文献求助10
8秒前
浮游应助anwen采纳,获得10
9秒前
斯文败类应助壮壮采纳,获得10
9秒前
Rain应助Wang采纳,获得10
11秒前
12秒前
脑洞疼应助开放青旋采纳,获得30
12秒前
Lucas应助长情胡萝卜采纳,获得30
13秒前
热心玉兰完成签到,获得积分10
14秒前
14秒前
真真发布了新的文献求助10
14秒前
14秒前
共享精神应助小分队采纳,获得10
14秒前
16秒前
高大的冰双完成签到,获得积分10
16秒前
zzm完成签到,获得积分10
16秒前
刚国忠发布了新的文献求助10
16秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557071
求助须知:如何正确求助?哪些是违规求助? 4642352
关于积分的说明 14667621
捐赠科研通 4583738
什么是DOI,文献DOI怎么找? 2514386
邀请新用户注册赠送积分活动 1488750
关于科研通互助平台的介绍 1459336