Generating bulk RNA-Seq gene expression data based on generative deep learning models and utilizing it for data augmentation

计算机科学 生成模型 人工智能 数据挖掘 预处理器 机器学习 可靠性(半导体) 相似性(几何) 样品(材料) 生成语法 吞吐量 物理 图像(数学) 电信 功率(物理) 量子力学 化学 色谱法 无线
作者
Yinglun Wang,Qiurui Chen,Jiawen Li,Rongxin Zhang,Han Shen
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:169: 107828-107828 被引量:2
标识
DOI:10.1016/j.compbiomed.2023.107828
摘要

Large-scale high-throughput transcriptome sequencing data holds significant value in biomedical research. However, practical challenges such as difficulty in sample acquisition often limit the availability of large sample sizes, leading to decreased reliability of the analysis results. In practice, generative deep learning models, such as Generative Adversarial Networks (GANs) and Diffusion Models (DMs), have been proven to generate realistic data and may be used to solve this promblem. In this study, we utilized bulk RNA-Seq gene expression data to construct different generative models with two data preprocessing methods: Min-Max-GAN, Z-Score-GAN, Min-Max-DM, and Z-Score-DM. We demonstrated that the generated data from the Min-Max-GAN model exhibited high similarity to real data, surpassing the performance of the other models significantly. Furthermore, we trained the models on the largest dataset available to date, achieving MMD (Maximum Mean Discrepancy) of 0.030 and 0.033 on the training and independent datasets, respectively. Through SHAP (SHapley Additive exPlanations) explanations of our generative model, we also enhanced our model's credibility. Finally, we applied the generated data to data augmentation and observed a significant improvement in the performance of classification models. In summary, this study establishes a GAN-based approach for generating bulk RNA-Seq gene expression data, which contributes to enhancing the performance and reliability of downstream tasks in high-throughput transcriptome analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zyy完成签到,获得积分10
刚刚
刚刚
充电宝应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
小富婆发布了新的文献求助10
2秒前
LHL完成签到,获得积分10
2秒前
戈戈唔完成签到 ,获得积分10
3秒前
3秒前
4秒前
5秒前
酷波er应助白华苍松采纳,获得10
5秒前
5秒前
初夏完成签到,获得积分0
7秒前
7秒前
8秒前
8秒前
tanhaili完成签到,获得积分10
8秒前
安夕阳发布了新的文献求助10
9秒前
9秒前
9秒前
可爱的函函应助彭于彦祖采纳,获得10
10秒前
糊涂的沛山完成签到 ,获得积分10
10秒前
任性冰凡发布了新的文献求助10
10秒前
11秒前
mygod发布了新的文献求助10
11秒前
高贵花瓣发布了新的文献求助10
12秒前
12秒前
...完成签到,获得积分10
13秒前
zy关闭了zy文献求助
13秒前
小富婆完成签到,获得积分10
13秒前
14秒前
欢呼高山完成签到,获得积分10
14秒前
starofjlu应助鱼鱼采纳,获得20
14秒前
安夕阳完成签到,获得积分10
15秒前
15秒前
Jasper应助zqingxia采纳,获得10
15秒前
香蕉觅云应助香蕉豌豆采纳,获得10
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149112
求助须知:如何正确求助?哪些是违规求助? 2800154
关于积分的说明 7838819
捐赠科研通 2457690
什么是DOI,文献DOI怎么找? 1307972
科研通“疑难数据库(出版商)”最低求助积分说明 628363
版权声明 601706