Generating bulk RNA-Seq gene expression data based on generative deep learning models and utilizing it for data augmentation

计算机科学 生成模型 人工智能 数据挖掘 预处理器 机器学习 可靠性(半导体) 相似性(几何) 样品(材料) 生成语法 吞吐量 物理 图像(数学) 电信 功率(物理) 量子力学 化学 色谱法 无线
作者
Yinglun Wang,Qiurui Chen,Hongwei Shao,Rongxin Zhang,Han Shen
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:169: 107828-107828 被引量:9
标识
DOI:10.1016/j.compbiomed.2023.107828
摘要

Large-scale high-throughput transcriptome sequencing data holds significant value in biomedical research. However, practical challenges such as difficulty in sample acquisition often limit the availability of large sample sizes, leading to decreased reliability of the analysis results. In practice, generative deep learning models, such as Generative Adversarial Networks (GANs) and Diffusion Models (DMs), have been proven to generate realistic data and may be used to solve this promblem. In this study, we utilized bulk RNA-Seq gene expression data to construct different generative models with two data preprocessing methods: Min-Max-GAN, Z-Score-GAN, Min-Max-DM, and Z-Score-DM. We demonstrated that the generated data from the Min-Max-GAN model exhibited high similarity to real data, surpassing the performance of the other models significantly. Furthermore, we trained the models on the largest dataset available to date, achieving MMD (Maximum Mean Discrepancy) of 0.030 and 0.033 on the training and independent datasets, respectively. Through SHAP (SHapley Additive exPlanations) explanations of our generative model, we also enhanced our model's credibility. Finally, we applied the generated data to data augmentation and observed a significant improvement in the performance of classification models. In summary, this study establishes a GAN-based approach for generating bulk RNA-Seq gene expression data, which contributes to enhancing the performance and reliability of downstream tasks in high-throughput transcriptome analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XU徐发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
顺利毕业发布了新的文献求助10
1秒前
1秒前
1秒前
漫游完成签到,获得积分10
1秒前
2秒前
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
快乐的厉完成签到,获得积分10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
Twonej应助科研通管家采纳,获得30
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
2秒前
ding应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
稳重峻熙完成签到,获得积分10
4秒前
彭于晏应助优美紫槐采纳,获得10
4秒前
orixero应助JamesYang采纳,获得10
5秒前
7秒前
Akim应助XX采纳,获得10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
月来越好应助科研力力采纳,获得10
9秒前
xiaoya发布了新的文献求助10
9秒前
11秒前
11秒前
qq完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729406
求助须知:如何正确求助?哪些是违规求助? 5317854
关于积分的说明 15316486
捐赠科研通 4876367
什么是DOI,文献DOI怎么找? 2619340
邀请新用户注册赠送积分活动 1568891
关于科研通互助平台的介绍 1525420