SUSHI: Ultra-High-Speed and Ultra-Low-Power Neuromorphic Chip Using Superconducting Single-Flux-Quantum Circuits

神经形态工程学 杠杆(统计) 计算机科学 炸薯条 电子工程 超导电性 电气工程 人工神经网络 物理 工程类 人工智能 电信 量子力学
作者
Zeshi Liu,Shuo Chen,Pei-Yao Qu,Huanli Liu,Minghui Niu,Liliang Ying,Jie Ren,Guangming Tang,Haihang You
标识
DOI:10.1145/3613424.3623787
摘要

The rapid single-flux-quantum (RSFQ) superconducting technology is highly promising due to its ultra-high-speed computation with ultra-low-power consumption, making it an ideal solution for the post-Moore era. In superconducting technology, information is encoded and processed based on pulses that resemble the neuronal pulses present in biological neural systems. This has led to a growing research focus on implementing neuromorphic processing using superconducting technology. However, current research on superconducting neuromorphic processing does not fully leverage the advantages of superconducting circuits due to incomplete neuromorphic design and approach. Although they have demonstrated the benefits of using superconducting technology for neuromorphic hardware, their designs are mostly incomplete, with only a few components validated, or based solely on simulation. This paper presents SUSHI (Superconducting neUromorphic proceSsing cHIp) to fully leverage the potential of superconducting neuromorphic processing. Based on three guiding principles and our architectural and methodological designs, we address existing challenges and enables the design of verifiable and fabricable superconducting neuromorphic chips. We fabricate and verify a chip of SUSHI using superconducting circuit technology. Successfully obtaining the correct inference results of a complete neural network on the chip, this is the first instance of neural networks being completely executed on a superconducting chip to the best of our knowledge. Our evaluation shows that using approximately 105 Josephson junctions, SUSHI achieves a peak neuromorphic processing performance of 1,355 giga-synaptic operations per second (GSOPS) and a power efficiency of 32,366 GSOPS per Watt (GSOPS/W). This power efficiency outperforms the state-of-the-art neuromorphic chips TrueNorth and Tianjic by 81 and 50 times, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
whuhustwit发布了新的文献求助10
1秒前
1秒前
憨憨鱼完成签到,获得积分10
2秒前
翟拂完成签到,获得积分10
2秒前
Rhan发布了新的文献求助10
3秒前
力口氵由发布了新的文献求助10
5秒前
LZH完成签到,获得积分10
7秒前
酷波er应助canglv采纳,获得10
7秒前
彭于晏应助1201采纳,获得10
8秒前
爱听歌代萱完成签到,获得积分10
8秒前
卡戎529完成签到,获得积分10
8秒前
8秒前
云鹏完成签到,获得积分10
8秒前
科研通AI2S应助香蕉长颈鹿采纳,获得10
8秒前
任性翠安发布了新的文献求助10
9秒前
11秒前
11秒前
miqiqi完成签到,获得积分10
12秒前
爆米花应助南楼小阁主采纳,获得10
13秒前
俗签发布了新的文献求助10
13秒前
wwho_O发布了新的文献求助10
15秒前
大福同学完成签到,获得积分10
15秒前
黄阿鹏发布了新的文献求助10
16秒前
17秒前
共享精神应助景飞丹采纳,获得10
18秒前
zw发布了新的文献求助10
18秒前
机智的小凡完成签到,获得积分10
22秒前
bioli发布了新的文献求助10
22秒前
23秒前
无花果应助能干的小海豚采纳,获得10
23秒前
科研通AI2S应助达进采纳,获得10
23秒前
tkdzjr12345完成签到,获得积分10
24秒前
研友_nPbeR8完成签到,获得积分10
25秒前
烟花应助Eve采纳,获得10
26秒前
peace完成签到,获得积分20
26秒前
xiying发布了新的文献求助10
27秒前
ywd发布了新的文献求助10
27秒前
小蘑菇应助112233采纳,获得10
27秒前
cach完成签到,获得积分10
28秒前
所所应助hope采纳,获得10
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145513
求助须知:如何正确求助?哪些是违规求助? 2796938
关于积分的说明 7822093
捐赠科研通 2453230
什么是DOI,文献DOI怎么找? 1305516
科研通“疑难数据库(出版商)”最低求助积分说明 627512
版权声明 601464