SUSHI: Ultra-High-Speed and Ultra-Low-Power Neuromorphic Chip Using Superconducting Single-Flux-Quantum Circuits

神经形态工程学 杠杆(统计) 计算机科学 炸薯条 电子工程 超导电性 电气工程 人工神经网络 物理 工程类 人工智能 电信 量子力学
作者
Zeshi Liu,Shuo Chen,Pei-Yao Qu,Huanli Liu,Minghui Niu,Liliang Ying,Jie Ren,Guangming Tang,Haihang You
标识
DOI:10.1145/3613424.3623787
摘要

The rapid single-flux-quantum (RSFQ) superconducting technology is highly promising due to its ultra-high-speed computation with ultra-low-power consumption, making it an ideal solution for the post-Moore era. In superconducting technology, information is encoded and processed based on pulses that resemble the neuronal pulses present in biological neural systems. This has led to a growing research focus on implementing neuromorphic processing using superconducting technology. However, current research on superconducting neuromorphic processing does not fully leverage the advantages of superconducting circuits due to incomplete neuromorphic design and approach. Although they have demonstrated the benefits of using superconducting technology for neuromorphic hardware, their designs are mostly incomplete, with only a few components validated, or based solely on simulation. This paper presents SUSHI (Superconducting neUromorphic proceSsing cHIp) to fully leverage the potential of superconducting neuromorphic processing. Based on three guiding principles and our architectural and methodological designs, we address existing challenges and enables the design of verifiable and fabricable superconducting neuromorphic chips. We fabricate and verify a chip of SUSHI using superconducting circuit technology. Successfully obtaining the correct inference results of a complete neural network on the chip, this is the first instance of neural networks being completely executed on a superconducting chip to the best of our knowledge. Our evaluation shows that using approximately 105 Josephson junctions, SUSHI achieves a peak neuromorphic processing performance of 1,355 giga-synaptic operations per second (GSOPS) and a power efficiency of 32,366 GSOPS per Watt (GSOPS/W). This power efficiency outperforms the state-of-the-art neuromorphic chips TrueNorth and Tianjic by 81 and 50 times, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
susu完成签到,获得积分10
1秒前
1秒前
1秒前
Akim应助斯文的碧采纳,获得10
3秒前
3秒前
Zing完成签到,获得积分10
3秒前
4秒前
5秒前
顾矜应助Winter采纳,获得10
5秒前
5秒前
5秒前
飞飞飞发布了新的文献求助10
6秒前
多罗罗完成签到,获得积分10
7秒前
Jadon发布了新的文献求助10
7秒前
林安笙发布了新的文献求助10
7秒前
8秒前
zpctx发布了新的文献求助10
8秒前
王昕钥完成签到,获得积分10
8秒前
浮游应助mengxiangrui采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
SciGPT应助dyjjudy采纳,获得10
9秒前
10秒前
10秒前
10秒前
Lucas应助单薄遥采纳,获得10
11秒前
锦李发布了新的文献求助10
11秒前
11秒前
ding应助Jadon采纳,获得10
13秒前
紧张的安双完成签到,获得积分20
13秒前
13秒前
田様应助张世健采纳,获得10
14秒前
希望天下0贩的0应助刺猬采纳,获得10
14秒前
星辰大海应助野性的沉鱼采纳,获得10
14秒前
单纯的初晴完成签到,获得积分20
14秒前
充电宝应助野性的沉鱼采纳,获得10
14秒前
科目三应助野性的沉鱼采纳,获得10
14秒前
Azyyyy完成签到,获得积分10
14秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5481343
求助须知:如何正确求助?哪些是违规求助? 4582305
关于积分的说明 14384747
捐赠科研通 4511013
什么是DOI,文献DOI怎么找? 2472161
邀请新用户注册赠送积分活动 1458514
关于科研通互助平台的介绍 1432064