亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Stabilizing Sulfur Sites in Tetraoxygen Tetrahedral Coordination Structure for Efficient Electrochemical Water Oxidation

非阻塞I/O 析氧 过渡金属 密度泛函理论 催化作用 电化学 电解质 无机化学 氧化物 化学 物理化学 计算化学 电极 有机化学
作者
Jing Jin,Jie Yin,Yang Hu,Yao Zheng,Hongbo Liu,Xinyao Wang,Pinxian Xi,Chun‐Hua Yan
出处
期刊:Angewandte Chemie [Wiley]
卷期号:63 (9) 被引量:2
标识
DOI:10.1002/anie.202313185
摘要

Abstract Ion regulation strategy is regarded as a promising pathway for designing transition metal oxide‐based electrocatalysts for oxygen evolution reaction (OER) with improved activity and stability. Precise anion conditioning can accurately change the anionic environment so that the acid radical ions (SO 4 2− , PO 3 2− , SeO 4 2− , etc.), regardless of their state (inside the catalyst, on the catalyst surface, or in the electrolyte), can optimize the electronic structure of the cationic active site and further increase the catalytic activity. Herein, we report a new approach to encapsulate S atoms at the tetrahedral sites of the NaCl‐type oxide NiO to form a tetraoxo‐tetrahedral coordination structure (S‐O 4 ) inside the NiO (S‐NiO ‐I). Density functional theory (DFT) calculations and operando vibrational spectroscopy proves that this kind of unique structure could achieve the S‐O 4 and Ni‐S stable structure in S‐NiO‐I. Combining mass spectroscopy characterization, it could be confirmed that the S‐O 4 structure is the key factor for triggering the lattice oxygen exchange to participate in the OER process. This work demonstrates that the formation of tetraoxygen tetrahedral structure is a generalized key for boosting the OER performances of transition metal oxides.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
斯文败类应助Yesaniar采纳,获得10
41秒前
55秒前
1分钟前
睿睿斌斌发布了新的文献求助10
1分钟前
JamesPei应助睿睿斌斌采纳,获得10
1分钟前
研友_LwbkK8完成签到,获得积分10
1分钟前
2分钟前
PIngguo完成签到,获得积分10
2分钟前
Rebeccaiscute完成签到 ,获得积分10
2分钟前
3分钟前
leo完成签到,获得积分10
4分钟前
leo发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
charliechen完成签到 ,获得积分10
4分钟前
hugeyoung完成签到,获得积分10
5分钟前
5分钟前
辅仁发布了新的文献求助10
5分钟前
5分钟前
back you up完成签到,获得积分10
6分钟前
6分钟前
HR112完成签到 ,获得积分10
6分钟前
7分钟前
JamesPei应助辅仁采纳,获得10
7分钟前
7分钟前
二月红发布了新的文献求助10
7分钟前
樱桃猴子应助白华苍松采纳,获得10
7分钟前
chiazy完成签到 ,获得积分10
7分钟前
吉吉完成签到,获得积分20
7分钟前
azsxdc完成签到 ,获得积分10
7分钟前
所所应助sidneyyang采纳,获得100
8分钟前
8分钟前
8分钟前
睿睿斌斌完成签到,获得积分10
8分钟前
8分钟前
VDC关闭了VDC文献求助
8分钟前
9分钟前
辅仁发布了新的文献求助10
9分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526553
求助须知:如何正确求助?哪些是违规求助? 3107017
关于积分的说明 9282035
捐赠科研通 2804613
什么是DOI,文献DOI怎么找? 1539526
邀请新用户注册赠送积分活动 716583
科研通“疑难数据库(出版商)”最低求助积分说明 709579