Spatial-Pooling-Based Graph Attention U-Net for Hyperspectral Image Classification

高光谱成像 联营 计算机科学 人工智能 模式识别(心理学) 遥感 地理
作者
Qi Diao,Yaping Dai,Jiacheng Wang,Xiaoxue Feng,Feng Pan,Ce Zhang
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:16 (6): 937-937 被引量:2
标识
DOI:10.3390/rs16060937
摘要

In recent years, graph convolutional networks (GCNs) have attracted increasing attention in hyperspectral image (HSI) classification owing to their exceptional representation capabilities. However, the high computational requirements of GCNs have led most existing GCN-based HSI classification methods to utilize superpixels as graph nodes, thereby limiting the spatial topology scale and neglecting pixel-level spectral–spatial features. To address these limitations, we propose a novel HSI classification network based on graph convolution called the spatial-pooling-based graph attention U-net (SPGAU). Specifically, unlike existing GCN models that rely on fixed graphs, our model involves a spatial pooling method that emulates the region-growing process of superpixels and constructs multi-level graphs by progressively merging adjacent graph nodes. Inspired by the CNN classification framework U-net, SPGAU’s model has a U-shaped structure, realizing multi-scale feature extraction from coarse to fine and gradually fusing features from different graph levels. Additionally, the proposed graph attention convolution method adaptively aggregates adjacency information, thereby further enhancing feature extraction efficiency. Moreover, a 1D-CNN is established to extract pixel-level features, striking an optimal balance between enhancing the feature quality and reducing the computational burden. Experimental results on three representative benchmark datasets demonstrate that the proposed SPGAU outperforms other mainstream models both qualitatively and quantitatively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
liuss发布了新的文献求助10
1秒前
ssherry完成签到,获得积分10
1秒前
hgl完成签到,获得积分10
2秒前
3秒前
邵翎365完成签到,获得积分10
3秒前
研友_Y59785应助清新的雨双采纳,获得10
3秒前
闪电完成签到,获得积分10
3秒前
milk完成签到 ,获得积分10
3秒前
4秒前
小卫卫发布了新的文献求助10
5秒前
hgl发布了新的文献求助10
6秒前
7秒前
7秒前
爆米花应助瘦瘦菠萝采纳,获得10
8秒前
yx_cheng应助afrex采纳,获得10
8秒前
jim_hacker发布了新的文献求助10
8秒前
Lucas应助旋转鸡爪子采纳,获得10
9秒前
Akim应助蟹蟹采纳,获得100
9秒前
laity发布了新的文献求助10
10秒前
自转无风完成签到,获得积分10
10秒前
Yuchia完成签到,获得积分20
11秒前
Tina发布了新的文献求助10
11秒前
13秒前
华仔应助冰柠檬采纳,获得10
15秒前
上官若男应助ll采纳,获得10
16秒前
瘦瘦菠萝完成签到,获得积分10
17秒前
jim_hacker完成签到,获得积分10
17秒前
传统的怀薇完成签到 ,获得积分10
17秒前
19秒前
19秒前
Ava应助苏栀采纳,获得10
20秒前
哎哟很烦完成签到,获得积分10
21秒前
laity完成签到,获得积分10
22秒前
放放完成签到,获得积分20
22秒前
22秒前
zhang值发布了新的文献求助10
22秒前
asdfghjkl发布了新的文献求助10
24秒前
25秒前
26秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998499
求助须知:如何正确求助?哪些是违规求助? 3538037
关于积分的说明 11273124
捐赠科研通 3277005
什么是DOI,文献DOI怎么找? 1807250
邀请新用户注册赠送积分活动 883825
科研通“疑难数据库(出版商)”最低求助积分说明 810061