Spatial-Pooling-Based Graph Attention U-Net for Hyperspectral Image Classification

高光谱成像 联营 计算机科学 人工智能 模式识别(心理学) 遥感 地理
作者
Qi Diao,Yaping Dai,Jiacheng Wang,Xiaoxue Feng,Feng Pan,Ce Zhang
出处
期刊:Remote Sensing [MDPI AG]
卷期号:16 (6): 937-937 被引量:2
标识
DOI:10.3390/rs16060937
摘要

In recent years, graph convolutional networks (GCNs) have attracted increasing attention in hyperspectral image (HSI) classification owing to their exceptional representation capabilities. However, the high computational requirements of GCNs have led most existing GCN-based HSI classification methods to utilize superpixels as graph nodes, thereby limiting the spatial topology scale and neglecting pixel-level spectral–spatial features. To address these limitations, we propose a novel HSI classification network based on graph convolution called the spatial-pooling-based graph attention U-net (SPGAU). Specifically, unlike existing GCN models that rely on fixed graphs, our model involves a spatial pooling method that emulates the region-growing process of superpixels and constructs multi-level graphs by progressively merging adjacent graph nodes. Inspired by the CNN classification framework U-net, SPGAU’s model has a U-shaped structure, realizing multi-scale feature extraction from coarse to fine and gradually fusing features from different graph levels. Additionally, the proposed graph attention convolution method adaptively aggregates adjacency information, thereby further enhancing feature extraction efficiency. Moreover, a 1D-CNN is established to extract pixel-level features, striking an optimal balance between enhancing the feature quality and reducing the computational burden. Experimental results on three representative benchmark datasets demonstrate that the proposed SPGAU outperforms other mainstream models both qualitatively and quantitatively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高毓发布了新的文献求助10
1秒前
IP190237完成签到,获得积分10
1秒前
1秒前
2秒前
汉堡包应助一朵白云采纳,获得10
2秒前
jphu完成签到,获得积分10
2秒前
田田田田完成签到,获得积分10
3秒前
orixero应助优秀不愁采纳,获得10
3秒前
4秒前
aa关注了科研通微信公众号
4秒前
wzy完成签到,获得积分10
5秒前
dai发布了新的文献求助30
5秒前
中科院一区选手完成签到,获得积分10
5秒前
6秒前
JudgeGoodwin完成签到,获得积分10
6秒前
6秒前
安详立果完成签到 ,获得积分10
8秒前
朝颜完成签到,获得积分10
8秒前
懿玉症完成签到,获得积分10
8秒前
SCINEXUS应助whz采纳,获得50
8秒前
Wri发布了新的文献求助10
9秒前
9秒前
动听的笑南完成签到,获得积分10
9秒前
奋斗的怀曼完成签到,获得积分10
9秒前
cn完成签到,获得积分10
10秒前
勤恳风华完成签到,获得积分10
10秒前
medlive2020发布了新的文献求助10
11秒前
Jarvis发布了新的文献求助10
11秒前
Xzai完成签到,获得积分10
12秒前
ding应助白凌风采纳,获得10
12秒前
12秒前
金考卷完成签到,获得积分10
12秒前
15秒前
满增明发布了新的文献求助10
15秒前
高毓完成签到,获得积分20
16秒前
16秒前
supermark123完成签到,获得积分10
17秒前
一一完成签到,获得积分20
17秒前
xrf完成签到,获得积分10
18秒前
王阳洋应助medlive2020采纳,获得10
18秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257371
求助须知:如何正确求助?哪些是违规求助? 2899272
关于积分的说明 8304996
捐赠科研通 2568569
什么是DOI,文献DOI怎么找? 1395172
科研通“疑难数据库(出版商)”最低求助积分说明 652955
邀请新用户注册赠送积分活动 630727