Spatial-Pooling-Based Graph Attention U-Net for Hyperspectral Image Classification

高光谱成像 联营 计算机科学 人工智能 模式识别(心理学) 遥感 地理
作者
Qi Diao,Yaping Dai,Jiacheng Wang,Xiaoxue Feng,Feng Pan,Ce Zhang
出处
期刊:Remote Sensing [MDPI AG]
卷期号:16 (6): 937-937 被引量:2
标识
DOI:10.3390/rs16060937
摘要

In recent years, graph convolutional networks (GCNs) have attracted increasing attention in hyperspectral image (HSI) classification owing to their exceptional representation capabilities. However, the high computational requirements of GCNs have led most existing GCN-based HSI classification methods to utilize superpixels as graph nodes, thereby limiting the spatial topology scale and neglecting pixel-level spectral–spatial features. To address these limitations, we propose a novel HSI classification network based on graph convolution called the spatial-pooling-based graph attention U-net (SPGAU). Specifically, unlike existing GCN models that rely on fixed graphs, our model involves a spatial pooling method that emulates the region-growing process of superpixels and constructs multi-level graphs by progressively merging adjacent graph nodes. Inspired by the CNN classification framework U-net, SPGAU’s model has a U-shaped structure, realizing multi-scale feature extraction from coarse to fine and gradually fusing features from different graph levels. Additionally, the proposed graph attention convolution method adaptively aggregates adjacency information, thereby further enhancing feature extraction efficiency. Moreover, a 1D-CNN is established to extract pixel-level features, striking an optimal balance between enhancing the feature quality and reducing the computational burden. Experimental results on three representative benchmark datasets demonstrate that the proposed SPGAU outperforms other mainstream models both qualitatively and quantitatively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乔佳怡发布了新的文献求助10
刚刚
文静勒应助aaaaa小柴采纳,获得50
1秒前
大个应助泰山球迷采纳,获得10
1秒前
dw发布了新的文献求助10
3秒前
lalala发布了新的文献求助10
5秒前
5秒前
浮游应助lc339采纳,获得10
5秒前
杨冀军完成签到 ,获得积分10
7秒前
7秒前
我是老大应助永梦双星采纳,获得10
8秒前
8秒前
小呆完成签到 ,获得积分10
8秒前
欢呼的芹发布了新的文献求助10
8秒前
9秒前
hh完成签到,获得积分10
9秒前
科研通AI6应助yixin采纳,获得10
9秒前
夏cai发布了新的文献求助30
10秒前
10秒前
11秒前
mnm发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
无极微光发布了新的文献求助20
13秒前
13秒前
14秒前
badjack发布了新的文献求助20
14秒前
ZunyeLiu发布了新的文献求助10
14秒前
15秒前
乔佳怡完成签到,获得积分10
15秒前
Rachel发布了新的文献求助10
15秒前
xin发布了新的文献求助10
16秒前
彭于晏应助mnm采纳,获得10
17秒前
乔达摩完成签到 ,获得积分0
18秒前
CipherSage应助dw采纳,获得10
18秒前
19秒前
20秒前
陈瑞完成签到,获得积分10
20秒前
123发布了新的文献求助10
21秒前
22秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453753
求助须知:如何正确求助?哪些是违规求助? 4561288
关于积分的说明 14281867
捐赠科研通 4485257
什么是DOI,文献DOI怎么找? 2456576
邀请新用户注册赠送积分活动 1447292
关于科研通互助平台的介绍 1422687