超级电容器
材料科学
碳纤维
电解质
水溶液
电容
氮气
电化学
化学工程
重量分析
分析化学(期刊)
无机化学
电极
物理化学
化学
有机化学
复合材料
工程类
复合数
作者
Jun Li,Zhenhai Xia,Xiaowei Wang,Feng Cheng,Qingcheng Zhang,Xi’an Chen,Yun Yang,Shun Wang,Huile Jin
标识
DOI:10.1002/adma.202310422
摘要
Abstract The acidic aqueous supercapacitors have been found to deliver appealing capacitive properties due to fast ion diffusion caused by the applied smallest size of hydrion. However, their practical applications are largely inhibited by the narrow electrochemical stability window of water (1.23 V). Herein, A nitrogen‐enriched porous carbon materials (RNOPCs) is reported, consisting of varied nitrogen doping bonded on sp 2 and sp 3 carbon sites, which are capable of stimulating a wider potential window up to 1.4 V and thus resulting in a great enhancement of capacitive performance in aqueous acidic electrolytes. Together with the improved electrical conductivity and preferable hydrion diffusion, RNOPCs exhibit an ultrahigh volumetric capacitance (1084 F cm −3 ) in 0.5 M H 2 SO 4 . Besides, a fully packed RNOPCs‐based symmetrical supercapacitor can deliver a high gravimetric and volumetric energy density of 31.8 Wh Kg −1 and 54.3 Wh L −1 respectively, approaching those of lead acid batteries (25–35 Wh Kg −1 ). The first‐principles calculations reveal that the lone pair electrons of the doped nitrogen can be delocalized on its neighboring carbon atoms, improving charge uptakes and overpotentials. Such facile and scale‐up production of carbon‐based supercapacitors can bridge the gap of energy density between traditional supercapacitors and batteries in aqueous electrolytes.
科研通智能强力驱动
Strongly Powered by AbleSci AI