A deep learning framework for predicting molecular property based on multi-type features fusion

分子图 计算机科学 分子描述符 水准点(测量) 代表(政治) 图形 分子动力学 人工智能 特征(语言学) 特征学习 财产(哲学) 模式识别(心理学) 计算生物学 机器学习 化学 理论计算机科学 数量结构-活动关系 计算化学 生物 语言学 哲学 认识论 大地测量学 政治 政治学 法学 地理
作者
Mei Ma,Xiujuan Lei
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:169: 107911-107911 被引量:3
标识
DOI:10.1016/j.compbiomed.2023.107911
摘要

Extracting expressive molecular features is essential for molecular property prediction. Sequence-based representation is a common representation of molecules, which ignores the structure information of molecules. While molecular graph representation has a weak ability in expressing the 3D structure. In this article, we try to make use of the advantages of different type representations simultaneously for molecular property prediction. Thus, we propose a fusion model named DLF-MFF, which integrates the multi-type molecular features. Specifically, we first extract four different types of features from molecular fingerprints, 2D molecular graph, 3D molecular graph and molecular image. Then, in order to learn molecular features individually, we use four essential deep learning frameworks, which correspond to four distinct molecular representations. The final molecular representation is created by integrating the four feature vectors and feeding them into prediction layer to predict molecular property. We compare DLF-MFF with 7 state-of-the-art methods on 6 benchmark datasets consisting of multiple molecular properties, the experimental results show that DLF-MFF achieves state-of-the-art performance on 6 benchmark datasets. Moreover, DLF-MFF is applied to identify potential anti-SARS-CoV-2 inhibitor from 2500 drugs. We predict probability of each drug being inferred as a 3CL protease inhibitor and also calculate the binding affinity scores between each drug and 3CL protease. The results show that DLF-MFF product better performance in the identification of anti-SARS-CoV-2 inhibitor. This work is expected to offer novel research perspectives for accurate prediction of molecular properties and provide valuable insights into drug repurposing for COVID-19.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天才幸运鱼完成签到,获得积分10
2秒前
xlk2222完成签到,获得积分10
2秒前
happy完成签到,获得积分10
3秒前
XU博士完成签到,获得积分10
4秒前
独指蜗牛完成签到 ,获得积分10
4秒前
指哪打哪完成签到,获得积分10
5秒前
火星天完成签到,获得积分10
8秒前
10秒前
木木完成签到,获得积分10
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
天天快乐应助科研通管家采纳,获得30
12秒前
Jackylee应助科研通管家采纳,获得10
12秒前
Jackylee应助科研通管家采纳,获得10
12秒前
ccc应助科研通管家采纳,获得20
12秒前
科研通AI2S应助Accepted采纳,获得10
12秒前
禾苗完成签到 ,获得积分10
14秒前
6666完成签到,获得积分10
15秒前
木木发布了新的文献求助10
15秒前
seattle完成签到,获得积分10
15秒前
YJ完成签到,获得积分10
16秒前
充电宝应助贝贝会多芬采纳,获得10
17秒前
Waaly完成签到,获得积分10
18秒前
太叔尔柳完成签到,获得积分10
19秒前
如意的馒头完成签到 ,获得积分10
19秒前
20秒前
bao完成签到,获得积分10
21秒前
Joeswith完成签到,获得积分10
23秒前
23秒前
胡子木完成签到,获得积分10
24秒前
20240901发布了新的文献求助10
25秒前
深情安青应助momo采纳,获得10
26秒前
不做科研发布了新的文献求助30
27秒前
shu完成签到,获得积分10
27秒前
jsdiohfsiodhg完成签到,获得积分10
28秒前
新世界的蜗牛完成签到,获得积分10
29秒前
XXXXH完成签到,获得积分10
30秒前
庄怀逸完成签到 ,获得积分10
30秒前
笛卡尔完成签到,获得积分10
32秒前
优雅的雁凡完成签到,获得积分10
32秒前
高分求助中
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 400
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3709234
求助须知:如何正确求助?哪些是违规求助? 3257371
关于积分的说明 9904441
捐赠科研通 2970244
什么是DOI,文献DOI怎么找? 1629116
邀请新用户注册赠送积分活动 772446
科研通“疑难数据库(出版商)”最低求助积分说明 743806