A Novel Approach for Data Feature Weighting Using Correlation Coefficients and Min–Max Normalization

规范化(社会学) 加权 人工智能 模式识别(心理学) 计算机科学 相关性 特征(语言学) 支持向量机 分类器(UML) 相关系数 机器学习 数据挖掘 数学 放射科 哲学 社会学 医学 语言学 人类学 几何学
作者
Mohammed Shantal,Zalinda Othman,Azuraliza Abu Bakar
出处
期刊:Symmetry [MDPI AG]
卷期号:15 (12): 2185-2185 被引量:13
标识
DOI:10.3390/sym15122185
摘要

In the realm of data analysis and machine learning, achieving an optimal balance of feature importance, known as feature weighting, plays a pivotal role, especially when considering the nuanced interplay between the symmetry of data distribution and the need to assign differential weights to individual features. Also, avoiding the dominance of large-scale traits is essential in data preparation. This step makes choosing an effective normalization approach one of the most challenging aspects of machine learning. In addition to normalization, feature weighting is another strategy to deal with the importance of the different features. One of the strategies to measure the dependency of features is the correlation coefficient. The correlation between features shows the relationship strength between the features. The integration of the normalization method with feature weighting in data transformation for classification has not been extensively studied. The goal is to improve the accuracy of classification methods by striking a balance between the normalization step and assigning greater importance to features with a strong relation to the class feature. To achieve this, we combine Min–Max normalization and weight the features by increasing their values based on their correlation coefficients with the class feature. This paper presents a proposed Correlation Coefficient with Min–Max Weighted (CCMMW) approach. The data being normalized depends on their correlation with the class feature. Logistic regression, support vector machine, k-nearest neighbor, neural network, and naive Bayesian classifiers were used to evaluate the proposed method. Twenty UCI Machine Learning Repository and Kaggle datasets with numerical values were also used in this study. The empirical results showed that the proposed CCMMW significantly improves the classification performance through support vector machine, logistic regression, and neural network classifiers in most datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dingdong发布了新的文献求助10
刚刚
xunxunmimi发布了新的文献求助50
刚刚
Z小姐发布了新的文献求助10
刚刚
幽壑之潜蛟应助123采纳,获得10
1秒前
是天使呢发布了新的文献求助10
1秒前
1秒前
研友_VZG7GZ应助坨坨西州采纳,获得10
2秒前
2秒前
华华完成签到,获得积分10
2秒前
刘明发布了新的文献求助10
2秒前
1604531786发布了新的文献求助10
4秒前
魁梧的小霸王完成签到,获得积分10
4秒前
星辰大海应助123采纳,获得10
4秒前
4秒前
是一只象完成签到,获得积分20
4秒前
科研通AI5应助海鸥海鸥采纳,获得10
5秒前
幸福遥完成签到,获得积分10
6秒前
6秒前
小王发布了新的文献求助10
6秒前
热心的代桃完成签到,获得积分10
6秒前
CodeCraft应助Olsters采纳,获得10
6秒前
7秒前
研友_IEEE快到碗里来完成签到,获得积分10
8秒前
哈哈大笑应助吴岳采纳,获得10
8秒前
8秒前
酷炫中蓝完成签到,获得积分10
8秒前
早川完成签到 ,获得积分10
9秒前
拼搏语薇完成签到,获得积分10
9秒前
科研通AI5应助SCI采纳,获得10
10秒前
dling02完成签到 ,获得积分10
10秒前
10秒前
是天使呢完成签到,获得积分10
10秒前
11秒前
11秒前
内向秋寒发布了新的文献求助10
11秒前
cc发布了新的文献求助10
11秒前
ding应助zhui采纳,获得10
12秒前
drwang120完成签到 ,获得积分10
12秒前
坨坨西州完成签到,获得积分10
13秒前
海绵体宝宝应助Louise采纳,获得20
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794