A Novel Approach for Data Feature Weighting Using Correlation Coefficients and Min–Max Normalization

规范化(社会学) 加权 人工智能 模式识别(心理学) 计算机科学 相关性 特征(语言学) 支持向量机 分类器(UML) 相关系数 机器学习 数据挖掘 数学 医学 语言学 哲学 几何学 社会学 人类学 放射科
作者
Mohammed Shantal,Zalinda Othman,Azuraliza Abu Bakar
出处
期刊:Symmetry [Multidisciplinary Digital Publishing Institute]
卷期号:15 (12): 2185-2185 被引量:13
标识
DOI:10.3390/sym15122185
摘要

In the realm of data analysis and machine learning, achieving an optimal balance of feature importance, known as feature weighting, plays a pivotal role, especially when considering the nuanced interplay between the symmetry of data distribution and the need to assign differential weights to individual features. Also, avoiding the dominance of large-scale traits is essential in data preparation. This step makes choosing an effective normalization approach one of the most challenging aspects of machine learning. In addition to normalization, feature weighting is another strategy to deal with the importance of the different features. One of the strategies to measure the dependency of features is the correlation coefficient. The correlation between features shows the relationship strength between the features. The integration of the normalization method with feature weighting in data transformation for classification has not been extensively studied. The goal is to improve the accuracy of classification methods by striking a balance between the normalization step and assigning greater importance to features with a strong relation to the class feature. To achieve this, we combine Min–Max normalization and weight the features by increasing their values based on their correlation coefficients with the class feature. This paper presents a proposed Correlation Coefficient with Min–Max Weighted (CCMMW) approach. The data being normalized depends on their correlation with the class feature. Logistic regression, support vector machine, k-nearest neighbor, neural network, and naive Bayesian classifiers were used to evaluate the proposed method. Twenty UCI Machine Learning Repository and Kaggle datasets with numerical values were also used in this study. The empirical results showed that the proposed CCMMW significantly improves the classification performance through support vector machine, logistic regression, and neural network classifiers in most datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
天天快乐应助LiuXinping采纳,获得10
1秒前
Jinna706发布了新的文献求助10
1秒前
Ray发布了新的文献求助10
2秒前
干净玉米发布了新的文献求助30
2秒前
dyauuu完成签到 ,获得积分10
2秒前
锦2022发布了新的文献求助10
2秒前
2秒前
一地狗粮完成签到,获得积分10
2秒前
suki发布了新的文献求助20
2秒前
恭喜发财完成签到,获得积分10
2秒前
局内人发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
CARL完成签到,获得积分10
3秒前
充电宝应助奋斗的珍采纳,获得10
4秒前
5秒前
TT完成签到,获得积分20
5秒前
阿妤发布了新的文献求助10
5秒前
Cindy发布了新的文献求助10
6秒前
小蘑菇应助小江采纳,获得10
6秒前
6秒前
123完成签到,获得积分10
7秒前
文静若南完成签到,获得积分20
7秒前
乐乐应助局内人采纳,获得10
7秒前
叶财财完成签到,获得积分10
8秒前
DQ发布了新的文献求助10
8秒前
三月完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
杨哈哈完成签到,获得积分10
9秒前
清爽妙竹应助jasmine19919采纳,获得10
10秒前
舒屿望迷完成签到,获得积分10
10秒前
11秒前
11秒前
干净玉米完成签到,获得积分20
11秒前
杨哈哈发布了新的文献求助10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951972
求助须知:如何正确求助?哪些是违规求助? 3497327
关于积分的说明 11086901
捐赠科研通 3228016
什么是DOI,文献DOI怎么找? 1784585
邀请新用户注册赠送积分活动 868794
科研通“疑难数据库(出版商)”最低求助积分说明 801180