清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Novel Approach for Data Feature Weighting Using Correlation Coefficients and Min–Max Normalization

规范化(社会学) 加权 人工智能 模式识别(心理学) 计算机科学 相关性 特征(语言学) 支持向量机 分类器(UML) 相关系数 机器学习 数据挖掘 数学 医学 语言学 哲学 几何学 社会学 人类学 放射科
作者
Mohammed Shantal,Zalinda Othman,Azuraliza Abu Bakar
出处
期刊:Symmetry [MDPI AG]
卷期号:15 (12): 2185-2185 被引量:13
标识
DOI:10.3390/sym15122185
摘要

In the realm of data analysis and machine learning, achieving an optimal balance of feature importance, known as feature weighting, plays a pivotal role, especially when considering the nuanced interplay between the symmetry of data distribution and the need to assign differential weights to individual features. Also, avoiding the dominance of large-scale traits is essential in data preparation. This step makes choosing an effective normalization approach one of the most challenging aspects of machine learning. In addition to normalization, feature weighting is another strategy to deal with the importance of the different features. One of the strategies to measure the dependency of features is the correlation coefficient. The correlation between features shows the relationship strength between the features. The integration of the normalization method with feature weighting in data transformation for classification has not been extensively studied. The goal is to improve the accuracy of classification methods by striking a balance between the normalization step and assigning greater importance to features with a strong relation to the class feature. To achieve this, we combine Min–Max normalization and weight the features by increasing their values based on their correlation coefficients with the class feature. This paper presents a proposed Correlation Coefficient with Min–Max Weighted (CCMMW) approach. The data being normalized depends on their correlation with the class feature. Logistic regression, support vector machine, k-nearest neighbor, neural network, and naive Bayesian classifiers were used to evaluate the proposed method. Twenty UCI Machine Learning Repository and Kaggle datasets with numerical values were also used in this study. The empirical results showed that the proposed CCMMW significantly improves the classification performance through support vector machine, logistic regression, and neural network classifiers in most datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ww完成签到,获得积分10
51秒前
52秒前
52秒前
59秒前
智智完成签到 ,获得积分10
1分钟前
枝枝复之之完成签到 ,获得积分10
1分钟前
46464发布了新的文献求助10
1分钟前
46464发布了新的文献求助10
2分钟前
大大大娇搞科研完成签到 ,获得积分10
2分钟前
Rainy完成签到 ,获得积分10
2分钟前
ZZ完成签到,获得积分10
2分钟前
46464发布了新的文献求助10
3分钟前
3分钟前
ZZ发布了新的文献求助10
3分钟前
Eri_SCI完成签到 ,获得积分10
3分钟前
Bazinga完成签到,获得积分10
5分钟前
顾矜应助lin.xy采纳,获得10
5分钟前
7分钟前
lin.xy发布了新的文献求助10
7分钟前
lin.xy完成签到,获得积分10
7分钟前
xaopng完成签到,获得积分10
8分钟前
8分钟前
kryzhang发布了新的文献求助10
8分钟前
tingyeh完成签到,获得积分10
9分钟前
宇文傲龙完成签到 ,获得积分10
10分钟前
Eatanicecube完成签到,获得积分10
10分钟前
Richard完成签到 ,获得积分10
11分钟前
爱听歌的书雁完成签到,获得积分10
13分钟前
木子倪发布了新的文献求助30
14分钟前
15分钟前
木子倪发布了新的文献求助30
15分钟前
Owen应助科研通管家采纳,获得10
16分钟前
糊涂的青烟完成签到 ,获得积分10
17分钟前
vitamin完成签到 ,获得积分10
17分钟前
tinner完成签到,获得积分10
17分钟前
可爱的函函应助sunny采纳,获得10
18分钟前
紫熊发布了新的文献求助30
20分钟前
21分钟前
21分钟前
21分钟前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Gerard de Lairesse : an artist between stage and studio 500
Digging and Dealing in Eighteenth-Century Rome 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3063160
求助须知:如何正确求助?哪些是违规求助? 2717940
关于积分的说明 7456727
捐赠科研通 2364292
什么是DOI,文献DOI怎么找? 1253382
科研通“疑难数据库(出版商)”最低求助积分说明 608564
版权声明 596606