A High-Quality Data Set of Protein–Ligand Binding Interactions Via Comparative Complex Structure Modeling

计算机科学 化学空间 蛋白质数据库 蛋白质配体 对接(动物) 配体(生物化学) 蛋白质结构 虚拟筛选 蛋白质结构预测 药物发现 数据挖掘 人工智能 机器学习 生物系统 化学 生物信息学 生物 医学 生物化学 受体 护理部 有机化学
作者
Xuelian Li,Cheng Shen,Hui Zhu,Yujian Yang,Qing Wang,Jincai Yang,Niu Huang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (7): 2454-2466 被引量:12
标识
DOI:10.1021/acs.jcim.3c01170
摘要

High-quality protein-ligand complex structures provide the basis for understanding the nature of noncovalent binding interactions at the atomic level and enable structure-based drug design. However, experimentally determined complex structures are scarce compared with the vast chemical space. In this study, we addressed this issue by constructing the BindingNet data set via comparative complex structure modeling, which contains 69,816 modeled high-quality protein-ligand complex structures with experimental binding affinity data. BindingNet provides valuable insights into investigating protein-ligand interactions, allowing visual inspection and interpretation of structural analogues' structure-activity relationships. It can also be used for evaluating machine-learning-based scoring functions. Our results indicate that machine learning models trained on BindingNet could reduce the bias caused by buried solvent-accessible surface area, as we previously found for models trained on the PDBbind data set. We also discussed strategies to improve BindingNet and its potential utilization for benchmarking the molecular docking methods and ligand binding free energy calculation approaches. The BindingNet complements PDBbind in constructing a sufficient and unbiased protein-ligand binding data set and is freely available at http://bindingnet.huanglab.org.cn.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助Bonnienuit采纳,获得50
1秒前
popooo完成签到,获得积分10
1秒前
2秒前
2秒前
sunnyqqz发布了新的文献求助30
2秒前
QLLW应助星辰坠于海采纳,获得10
2秒前
幸运小狗发布了新的文献求助10
2秒前
慕青应助Ao采纳,获得10
3秒前
Lucas应助程天佑采纳,获得10
3秒前
SC30完成签到,获得积分10
4秒前
Akim应助yyanxuemin919采纳,获得10
5秒前
金秋完成签到,获得积分0
6秒前
kyf完成签到 ,获得积分10
6秒前
常彬完成签到,获得积分10
7秒前
xiaoxixiccccc发布了新的文献求助10
8秒前
orixero应助变化是永恒的采纳,获得10
9秒前
9秒前
shxxy123发布了新的文献求助50
9秒前
冷艳的匪发布了新的文献求助10
10秒前
10秒前
仙女完成签到 ,获得积分10
11秒前
行者无疆发布了新的文献求助10
12秒前
Umind发布了新的文献求助10
14秒前
我是老大应助Jodie采纳,获得10
15秒前
安静真完成签到,获得积分10
18秒前
科研通AI6应助风控采纳,获得10
19秒前
fish完成签到,获得积分10
19秒前
19秒前
PORCO完成签到,获得积分10
22秒前
22秒前
蝉鸣一夏完成签到,获得积分10
23秒前
陈一完成签到,获得积分10
24秒前
安静真发布了新的文献求助10
24秒前
qintiantian完成签到,获得积分10
25秒前
26秒前
26秒前
张zhang发布了新的文献求助10
27秒前
Mine发布了新的文献求助30
27秒前
27秒前
whoKnows应助jiujiu采纳,获得20
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560166
求助须知:如何正确求助?哪些是违规求助? 4645315
关于积分的说明 14674844
捐赠科研通 4586430
什么是DOI,文献DOI怎么找? 2516437
邀请新用户注册赠送积分活动 1490066
关于科研通互助平台的介绍 1460870