A High-Quality Data Set of Protein–Ligand Binding Interactions Via Comparative Complex Structure Modeling

计算机科学 化学空间 蛋白质数据库 蛋白质配体 对接(动物) 配体(生物化学) 蛋白质结构 虚拟筛选 蛋白质结构预测 药物发现 数据挖掘 人工智能 机器学习 生物系统 化学 生物信息学 生物 医学 生物化学 受体 护理部 有机化学
作者
Xuelian Li,Cheng Shen,Hui Zhu,Yujian Yang,Qing Wang,Jincai Yang,Niu Huang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (7): 2454-2466 被引量:12
标识
DOI:10.1021/acs.jcim.3c01170
摘要

High-quality protein-ligand complex structures provide the basis for understanding the nature of noncovalent binding interactions at the atomic level and enable structure-based drug design. However, experimentally determined complex structures are scarce compared with the vast chemical space. In this study, we addressed this issue by constructing the BindingNet data set via comparative complex structure modeling, which contains 69,816 modeled high-quality protein-ligand complex structures with experimental binding affinity data. BindingNet provides valuable insights into investigating protein-ligand interactions, allowing visual inspection and interpretation of structural analogues' structure-activity relationships. It can also be used for evaluating machine-learning-based scoring functions. Our results indicate that machine learning models trained on BindingNet could reduce the bias caused by buried solvent-accessible surface area, as we previously found for models trained on the PDBbind data set. We also discussed strategies to improve BindingNet and its potential utilization for benchmarking the molecular docking methods and ligand binding free energy calculation approaches. The BindingNet complements PDBbind in constructing a sufficient and unbiased protein-ligand binding data set and is freely available at http://bindingnet.huanglab.org.cn.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
零四零零柒贰完成签到 ,获得积分10
刚刚
刚刚
刚刚
刚刚
刚刚
1秒前
1秒前
1秒前
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
忧虑的代容完成签到 ,获得积分10
1秒前
1秒前
1秒前
1秒前
1秒前
上官若男应助sinlar采纳,获得10
1秒前
天天快乐应助无限的幼萱采纳,获得10
1秒前
2秒前
2秒前
互助应助科研通管家采纳,获得10
3秒前
无极微光应助科研通管家采纳,获得20
3秒前
思源应助科研通管家采纳,获得30
4秒前
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
无极微光应助科研通管家采纳,获得20
4秒前
打打应助科研通管家采纳,获得10
4秒前
开放鸿涛应助科研通管家采纳,获得10
4秒前
4秒前
charint应助科研通管家采纳,获得30
4秒前
烟花应助科研通管家采纳,获得10
4秒前
开放鸿涛应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
JamesPei应助莫湫采纳,获得10
5秒前
wsyiming完成签到,获得积分10
5秒前
亗sui发布了新的文献求助10
6秒前
7秒前
英姑应助三只兔子采纳,获得10
7秒前
ash发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Variants in Economic Theory 1000
Signals, Systems, and Signal Processing 880
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Discrete-Time Signals and Systems 510
Clinical Efficacy of the Hydrogel Patch Containing Loxoprofen Sodium (LX-A) on Osteoarthritis of the Knee-A Randomized, Open Label Clinical Study with Ketoprofen Patch-(Phase III Therapeutic Confirmatory Study) 410
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5842960
求助须知:如何正确求助?哪些是违规求助? 6177670
关于积分的说明 15610714
捐赠科研通 4960102
什么是DOI,文献DOI怎么找? 2674103
邀请新用户注册赠送积分活动 1618937
关于科研通互助平台的介绍 1574172