里程计
协方差
计算机科学
激光雷达
惯性测量装置
估计员
编码(集合论)
源代码
概率逻辑
惯性参考系
体素
点云
算法
人工智能
遥感
机器人
地质学
数学
物理
移动机器人
统计
操作系统
集合(抽象数据类型)
量子力学
程序设计语言
作者
Zijie Chen,Yong Xu,Shenghai Yuan,Lihua Xie
出处
期刊:IEEE robotics and automation letters
日期:2024-01-04
卷期号:9 (2): 1883-1890
被引量:8
标识
DOI:10.1109/lra.2024.3349915
摘要
This work proposes an incremental Generalized Iterative Closest Point (GICP) based tightly-coupled LiDAR-inertial odometry (LIO), iG-LIO, which integrates the GICP constraints and inertial constraints into a unified estimation framework. iG-LIO uses a voxel-based surface covariance estimator to estimate the surface covariances of scans, and utilizes an incremental voxel map to represent the probabilistic models of surrounding environments. These methods successfully reduce the time consumption of the covariance estimation, nearest neighbor search, and map management. Extensive datasets collected from mechanical LiDARs and solid-state LiDARs are employed to evaluate the efficiency and accuracy of the proposed LIO. Even though iG-LIO keeps identical parameters across all datasets, the results show that it is more efficient than Faster-LIO while maintaining comparable accuracy with state-of-the-art LIO systems. The source code for iG-LIO has been open-sourced on GitHub: https://github.com/zijiechenrobotics/ig_lio .
科研通智能强力驱动
Strongly Powered by AbleSci AI