Collaborative Tag-Aware Graph Neural Network for Long-Tail Service Recommendation

计算机科学 混搭 嵌入 图形 骨料(复合) 长尾 服务(商务) 节点(物理) 推荐系统 个性化 甲骨文公司 Web服务 数据挖掘 情报检索 人工智能 万维网 理论计算机科学 Web导航 统计 材料科学 数学 经济 结构工程 软件工程 工程类 经济 复合材料
作者
Zhipeng Zhang,Yuhang Zhang,Mianxiong Dong,Kaoru Ota,Yao Zhang,Yonggong Ren
出处
期刊:IEEE Transactions on Services Computing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:1
标识
DOI:10.1109/tsc.2024.3349853
摘要

Long-tail service recommendation provides an unexpected but reasonable experience for potential developers when they construct mashups. However, the lack of available information makes it difficult to recommend highly relevant long-tail services for target mashups. Collaborative tagging systems employ extensive tag records to replenish the available information of long-tail services, whereas existing tag-aware approaches are unable to learn multi-aspect embeddings from graphs with different structures and relationships for long-tail services. To this end, we present a novel approach, namely collaborative tag-aware graph neural network, to recommend satisfactory long-tail services by extracting multi-aspect embeddings. Firstly, a tensor decomposition is executed to parameterize mashups, tags, and services as low-dimensional vector representations, respectively. Then, an interaction-aware heterogeneous neighbor aggregation is presented to aggregate both neighboring node features and interaction strength to enhance the embedding quality of long-tail services. Next, a diffusion-aware homogeneous neighbor aggregation is proposed to assign higher weights for long-tail neighboring nodes so as to reduce the influence of popular neighboring nodes during the aggregation process. Furthermore, a type-aware attention network is employed to update the final node embedding by aggregating multi-aspect embeddings. Experimental results on two real-world Web service datasets indicate that the proposed approach generates superior accuracy and diversity than state-of-the-art approaches in the aspect of long-tail service recommendation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张欣宇发布了新的文献求助10
1秒前
Abdurrahman完成签到,获得积分10
1秒前
蓝天发布了新的文献求助10
1秒前
硬币完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
科研求求你嘛完成签到,获得积分10
2秒前
愉快的苑博完成签到,获得积分10
3秒前
次一口多多完成签到,获得积分10
3秒前
3秒前
xx发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
liu发布了新的文献求助10
4秒前
yordeabese完成签到,获得积分10
4秒前
Ava应助轩辕雨文采纳,获得20
4秒前
4秒前
4秒前
Shalala完成签到,获得积分10
5秒前
5秒前
Sunyidan完成签到,获得积分10
5秒前
zhangyue7777完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
cc完成签到 ,获得积分10
7秒前
安_完成签到,获得积分10
7秒前
8秒前
enen完成签到,获得积分10
8秒前
活泼音响完成签到,获得积分10
9秒前
9秒前
科研通AI2S应助莉莉酱采纳,获得10
9秒前
白鹿发布了新的文献求助10
9秒前
10秒前
一一应助zyy采纳,获得10
11秒前
12秒前
科研通AI6应助liu采纳,获得10
12秒前
糊涂的MJ完成签到,获得积分20
12秒前
幼儿园抢饭第一名完成签到,获得积分20
13秒前
wz发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608315
求助须知:如何正确求助?哪些是违规求助? 4692918
关于积分的说明 14876115
捐赠科研通 4717325
什么是DOI,文献DOI怎么找? 2544189
邀请新用户注册赠送积分活动 1509187
关于科研通互助平台的介绍 1472836