清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Collaborative Tag-Aware Graph Neural Network for Long-Tail Service Recommendation

计算机科学 混搭 嵌入 图形 骨料(复合) 长尾 服务(商务) 节点(物理) 推荐系统 个性化 甲骨文公司 Web服务 数据挖掘 情报检索 人工智能 万维网 理论计算机科学 Web导航 统计 材料科学 数学 经济 结构工程 软件工程 工程类 经济 复合材料
作者
Zhipeng Zhang,Yuhang Zhang,Mianxiong Dong,Kaoru Ota,Yao Zhang,Yonggong Ren
出处
期刊:IEEE Transactions on Services Computing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:1
标识
DOI:10.1109/tsc.2024.3349853
摘要

Long-tail service recommendation provides an unexpected but reasonable experience for potential developers when they construct mashups. However, the lack of available information makes it difficult to recommend highly relevant long-tail services for target mashups. Collaborative tagging systems employ extensive tag records to replenish the available information of long-tail services, whereas existing tag-aware approaches are unable to learn multi-aspect embeddings from graphs with different structures and relationships for long-tail services. To this end, we present a novel approach, namely collaborative tag-aware graph neural network, to recommend satisfactory long-tail services by extracting multi-aspect embeddings. Firstly, a tensor decomposition is executed to parameterize mashups, tags, and services as low-dimensional vector representations, respectively. Then, an interaction-aware heterogeneous neighbor aggregation is presented to aggregate both neighboring node features and interaction strength to enhance the embedding quality of long-tail services. Next, a diffusion-aware homogeneous neighbor aggregation is proposed to assign higher weights for long-tail neighboring nodes so as to reduce the influence of popular neighboring nodes during the aggregation process. Furthermore, a type-aware attention network is employed to update the final node embedding by aggregating multi-aspect embeddings. Experimental results on two real-world Web service datasets indicate that the proposed approach generates superior accuracy and diversity than state-of-the-art approaches in the aspect of long-tail service recommendation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
24秒前
automan发布了新的文献求助10
28秒前
automan完成签到,获得积分10
36秒前
zxcvvbb1001完成签到 ,获得积分10
42秒前
56秒前
YifanWang应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Wang完成签到 ,获得积分20
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
方白秋完成签到,获得积分0
1分钟前
Mollyxueyue应助breeze采纳,获得50
2分钟前
2分钟前
刻苦的阁完成签到,获得积分10
2分钟前
blush完成签到 ,获得积分10
3分钟前
宝贝完成签到 ,获得积分10
3分钟前
大医仁心完成签到 ,获得积分10
3分钟前
大模型应助真实的青旋采纳,获得10
3分钟前
3分钟前
Lynn完成签到,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
YifanWang应助科研通管家采纳,获得10
5分钟前
YifanWang应助科研通管家采纳,获得10
5分钟前
Crazybow5完成签到,获得积分10
5分钟前
5分钟前
烟消云散完成签到,获得积分10
6分钟前
6分钟前
Barry发布了新的文献求助10
6分钟前
xxfsx应助Barry采纳,获得10
6分钟前
YifanWang应助科研通管家采纳,获得10
7分钟前
YifanWang应助科研通管家采纳,获得10
7分钟前
YifanWang应助科研通管家采纳,获得10
7分钟前
YifanWang应助科研通管家采纳,获得10
7分钟前
7分钟前
机智的孤兰完成签到 ,获得积分10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
7分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418395
求助须知:如何正确求助?哪些是违规求助? 4534151
关于积分的说明 14143199
捐赠科研通 4450380
什么是DOI,文献DOI怎么找? 2441186
邀请新用户注册赠送积分活动 1432941
关于科研通互助平台的介绍 1410307