Collaborative Tag-Aware Graph Neural Network for Long-Tail Service Recommendation

计算机科学 混搭 嵌入 图形 骨料(复合) 长尾 服务(商务) 节点(物理) 推荐系统 个性化 甲骨文公司 Web服务 数据挖掘 情报检索 人工智能 万维网 理论计算机科学 Web导航 统计 材料科学 数学 经济 结构工程 软件工程 工程类 经济 复合材料
作者
Zhipeng Zhang,Yuhang Zhang,Mianxiong Dong,Kaoru Ota,Yao Zhang,Yonggong Ren
出处
期刊:IEEE Transactions on Services Computing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:1
标识
DOI:10.1109/tsc.2024.3349853
摘要

Long-tail service recommendation provides an unexpected but reasonable experience for potential developers when they construct mashups. However, the lack of available information makes it difficult to recommend highly relevant long-tail services for target mashups. Collaborative tagging systems employ extensive tag records to replenish the available information of long-tail services, whereas existing tag-aware approaches are unable to learn multi-aspect embeddings from graphs with different structures and relationships for long-tail services. To this end, we present a novel approach, namely collaborative tag-aware graph neural network, to recommend satisfactory long-tail services by extracting multi-aspect embeddings. Firstly, a tensor decomposition is executed to parameterize mashups, tags, and services as low-dimensional vector representations, respectively. Then, an interaction-aware heterogeneous neighbor aggregation is presented to aggregate both neighboring node features and interaction strength to enhance the embedding quality of long-tail services. Next, a diffusion-aware homogeneous neighbor aggregation is proposed to assign higher weights for long-tail neighboring nodes so as to reduce the influence of popular neighboring nodes during the aggregation process. Furthermore, a type-aware attention network is employed to update the final node embedding by aggregating multi-aspect embeddings. Experimental results on two real-world Web service datasets indicate that the proposed approach generates superior accuracy and diversity than state-of-the-art approaches in the aspect of long-tail service recommendation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Henry完成签到,获得积分10
刚刚
SciGPT应助xue采纳,获得10
刚刚
慕青应助虾仁采纳,获得10
刚刚
huangwensou发布了新的文献求助10
1秒前
1秒前
1秒前
SUT文献战神完成签到,获得积分10
1秒前
红豆完成签到,获得积分10
1秒前
1秒前
2秒前
香蕉觅云应助糟糕的铁锤采纳,获得10
2秒前
3秒前
孙笑川258完成签到,获得积分10
3秒前
宋宋完成签到,获得积分10
4秒前
4秒前
4秒前
告白气球完成签到,获得积分10
5秒前
Dexter完成签到 ,获得积分10
5秒前
Mario发布了新的文献求助30
6秒前
LXiao完成签到,获得积分10
6秒前
6秒前
6秒前
俏皮卿发布了新的文献求助10
7秒前
曾经寄真完成签到,获得积分10
7秒前
隐形曼青应助乐意你采纳,获得10
7秒前
8秒前
今后应助yang采纳,获得10
8秒前
9秒前
9秒前
花开富贵发布了新的文献求助20
9秒前
mouxq发布了新的文献求助10
9秒前
告白气球发布了新的文献求助10
10秒前
lyt完成签到,获得积分10
10秒前
10秒前
搜集达人应助Anson采纳,获得10
10秒前
11秒前
xhm发布了新的文献求助10
11秒前
领导范儿应助曾经寄真采纳,获得10
12秒前
田様应助不安豁采纳,获得10
12秒前
LMZ发布了新的文献求助10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3955056
求助须知:如何正确求助?哪些是违规求助? 3501390
关于积分的说明 11102563
捐赠科研通 3231634
什么是DOI,文献DOI怎么找? 1786494
邀请新用户注册赠送积分活动 870109
科研通“疑难数据库(出版商)”最低求助积分说明 801813