An indoor airflow distribution predictor using machine learning for a real-time healthy building monitoring system in the tropics

气流 热带 室内空气质量 环境科学 室内空气 分布(数学) 实时计算 计算机科学 人工智能 气象学 模拟 工程类 环境工程 数学 地理 机械工程 生态学 生物 数学分析
作者
Faridah Faridah,Sentagi Sesotya Utami,Dinta Dwi Agung Wijaya,Ressy Jaya Yanti,Wahyu Sukestyastama Putra,Billie Adrian
出处
期刊:Building Services Engineering Research and Technology [SAGE Publishing]
卷期号:45 (3): 293-315 被引量:2
标识
DOI:10.1177/01436244241231354
摘要

Indoor air quality is the foundation of a good indoor environment. The COVID-19 pandemic further highlighted the importance of providing real-time airflow distribution information within the Building Environmental Monitoring System (BEMS) to minimize the risk of infectious airborne transmission. This paper discusses the process of developing a predictive model for indoor airflow distribution prediction with indoor and outdoor input parameters using machine learning and its implementation in healthy BEMS for a classroom in the tropical climate region of Yogyakarta, Indonesia. This paper encompassed field measurement and simulation involving outdoor climate conditions and the operational status of the classroom’s windows, Air Conditioning units, and fans. Three machine learning models were constructed using OLS, LASSO, and Ridge methods. Datasets for the modeling were generated from CFD model simulations in IES VE and were assessed for correlation. The mean temperature and velocity differences between the CFD model simulation and measurement results are 0.21°C and 0.083 m/s, respectively. Outdoor climate conditions and the operational status of the classroom’s utilities significantly influence the indoor airflow distribution characteristics. The three models indicate a relatively poor performance, where the classroom had a relatively low sensitivity to input changes. However, the best model performance was achieved using the LASSO method, with average values from post-normalization of [Formula: see text] and Root Mean Square Error (RMSE) of 0.336 and 0.077, respectively. The model was implemented in healthy BEMS on the “Platform for Healthy and Energy Efficient Building Management System.” Practical Application: This research proposed a machine learning model of indoor airflow characteristics of a classroom in Yogyakarta. The proposed model can be adapted to produce monitoring systems that best represent the related conditions. The method can be adopted to develop a relatively simple, low-cost sensor or model to monitor an indoor environment. Future studies may explore the results of the real-world implementation in a case study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
6秒前
Anthonywll发布了新的文献求助10
7秒前
8秒前
深情安青应助科研喵采纳,获得10
9秒前
11秒前
12秒前
如意若冰发布了新的文献求助10
13秒前
Karinaa完成签到,获得积分20
14秒前
大个应助科研通管家采纳,获得10
15秒前
机灵飞兰应助科研通管家采纳,获得10
16秒前
赘婿应助科研通管家采纳,获得10
16秒前
16秒前
英俊的铭应助科研通管家采纳,获得10
16秒前
共享精神应助科研通管家采纳,获得10
16秒前
melon应助科研通管家采纳,获得10
16秒前
科目三应助科研通管家采纳,获得10
16秒前
打打应助科研通管家采纳,获得30
16秒前
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
17秒前
欧阳娜娜发布了新的文献求助30
17秒前
潇洒的诗桃应助Anthonywll采纳,获得10
18秒前
Karinaa发布了新的文献求助10
20秒前
日川冈坂完成签到 ,获得积分10
20秒前
21秒前
看的都懂发布了新的文献求助10
22秒前
沐阳发布了新的文献求助10
26秒前
Christina完成签到,获得积分10
27秒前
27秒前
33秒前
34秒前
今后应助王钰淼采纳,获得10
35秒前
little佳发布了新的文献求助10
38秒前
Will完成签到,获得积分10
39秒前
从容的方盒完成签到,获得积分10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775609
求助须知:如何正确求助?哪些是违规求助? 3321227
关于积分的说明 10204267
捐赠科研通 3036041
什么是DOI,文献DOI怎么找? 1665963
邀请新用户注册赠送积分活动 797196
科研通“疑难数据库(出版商)”最低求助积分说明 757766