雪
环境科学
辐射
冰的形成
气象学
地质学
自然地理学
大气科学
遥感
光学
地理
物理
作者
Wen Zhao,Wenfeng Huang,Rui Li,Jinrong Zhang,Cheng Zhang,Zhijun Li,Zhanju Lin
标识
DOI:10.1080/02626667.2023.2297075
摘要
Field observations were performed in Lake Nanhai, a shallow Chinese lake, to investigate the impact of variations in snow thickness (0–7.0 cm) on solar radiation transfer. As the snow thickness increases from 0 to 7.0 cm, the albedo increases from 0.27 to 0.96. The bulk extinction coefficients of snow, snow-ice, and congelation ice are 9.47, 9.69, and 2.18 m−1, respectively. The peak of the transmission spectrum shifts from the blue to green light waveband compared to the solar radiation spectrum. The proportion of incident radiation at surface penetrating to the under-ice water ranges from 0.5% to 19.7% associated with snow depth from 7 cm to 0 cm. Fresh snow influences the under-ice light condition crucially, and therefore the seasonal evolution of the lake phytoplankton community is affected.
科研通智能强力驱动
Strongly Powered by AbleSci AI